通讯作者:Olayinka O.I通讯作者:babawaleoluseyi@gmail.com,07069387726。摘要这项研究的重点是姜黄粉提取物的近端,矿物质和植物化学组成。姜黄的近端组成显示水分,干物质,蛋白质,纤维,醚提取物,灰分和碳水化合物含量分别为5.59、94.41、8.73、7.06、5.61、5.61、5.06和67.95%。结果表明,根茎粉末含有明显和高品质的原油和碳水化合物分别为8.73%和67.95%。姜黄提取物的醚提取物和灰分揭示了植酸和草酸盐的存在。使用实验室MDethod进行了各种植物化学成分的姜黄的植物化学筛选。初步的植物化学筛选揭示了生物碱,类黄酮,糖苷,糖苷,皂苷,类固醇,苯酚,单宁,萜类化合物和花青素的存在和定量分析类胡萝卜素未进行测试。矿物质成分分析(PPM)ofturmeric Rhizome表示存在钙(3.40),钾(1.95),镁(0.90),锌(0.44),磷(1.85)和铁(0.20)。营养物质的存在证明姜黄粉可以用作食物补充剂。关键字:姜黄,近端,矿物质组成,植物化学引言植物源是一组自然生长促进剂或用作饲料添加剂的非抗生素增长促进剂,这些添加剂源自草药,香料或其他植物,它们也被称为植物源性添加剂添加剂(PFA)或Phytobobiotics。植物基因的例子是大蒜,姜黄,姜,咖喱,洋葱et.c.turmeric是一种香料,它使咖喱具有黄色。curcuma longa linn,通常称为姜黄,是南亚和东南亚的热带多年生多年生单子叶植物(Nwaekpe等,2015)。它属于Zingiberaceae的家族(Jilani等,2012)。它已被用作香料和药剂。最近,科学已经开始支持传统的主张,即姜黄含有药物特性的化合物。这些化合物称为姜黄素,最重要的是姜黄素。姜黄素是姜黄中的主要活性成分。它具有强大的抗炎作用,并且是一种非常强大的抗氧化剂。随着全世界趋向于有机生产,植物仍然是饲料补充剂的最富有,最安全的生物储备,如果经过充分探索,将有助于避免与经常使用合成医学(例如抗生素)有关的副作用问题。因此,需要在牲畜行业中替代益生菌替代抗生素,因为动物消耗会影响其产品的质量,从而影响消费者的福祉。矿物质是天然存在的化学化合物,通常是结晶形式和起源的生物形式。使用原子吸收分光光度计确定了包括钾(K),钙(Ca),钙(CA),镁(Mg)和锌(Zn),磷(P)和铁(Fe)的矿物质成分,如AOAC的方法(2005)。矿物质是人体在许多方面使用的化学成分。他们在体内许多活动中都起着重要的作用。矿物质被归类为宏(主要)和次要元素。磷是比色法。因此,这项研究的目的是确定姜黄粉的近端,矿物质和植物化学成分。姜黄根茎的材料和方法来源和制备新鲜姜黄根茎在尼日利亚北部科吉州的Kabba市场本地购买。姜黄根茎是手动清洁,剥皮并切成碎片的,它们在阴影下被空气干燥以
摘要 — 在过去十年中,近似计算 (AxC) 已被研究作为一种可能的替代计算范式。它已被用于降低传统容错方案(如三重模块冗余 (TMR))的开销成本。最近的提议之一是四重近似模块冗余 (QAMR) 的概念。QAMR 降低了相对于传统 TMR 结构的开销成本,同时保证了相同的容错能力。在本文中,我们提出了一种新的近似技术来实现 QAMR,并进行了设计空间探索 (DSE) 以找到 QAMR 帕累托最优实现。此外,我们为所提出的架构提供了一个新的多数表决器的设计。实验结果表明,对于 FPGA 和 ASIC 技术,分别有 85.4% 和 97% 的电路可以找到与 TMR 对应物相比实现面积和/或延迟增益的 QAMR 变体。索引词 — 容错;纠错;三重模块冗余;TMR;近似计算;四重近似模块冗余;QAMR;数字电路;近似计算
通过环化增强的肽链的效力、特异性和安全性范围已经证明了环肽的基本特征。在 4 60 种 FDA 和 EMA 批准的肽中,2 三分之二为环状形式,在现代制药行业中发挥着重要作用。3 环化引入的约束使肽链在构象上更稳定,这提高了靶蛋白结合亲和力,并由于替代构象较少而减少了非特异性结合。4 构象灵活性降低降低了分子适合蛋白酶催化位点的机会,蛋白质组学抗性得到改善。5 环化还通过形成更大的相互作用表面来增加肽链的功效,以介入蛋白质-蛋白质相互作用。6 总体而言,肽链环化导致环肽与线性肽本质上不同。7,8
在国家氢能和燃料电池技术创新的背景下,弗劳恩霍夫 ISE 扩大了其研发基础设施,运营着全球为数不多的高温近常压 X 射线光电子能谱 (HT-NAP-XPS) 设施之一,从而为电解和燃料电池系统以及基于氢的 Power to X 概念的发展树立了另一个里程碑。EnviroESCA 设备为化学和加工工业等合作伙伴提供了更广泛的特性分析范围。该系统能够在近常压条件下研究几乎所有表面的化学状态。
首先,我要感谢我的主管卢卡·贝尼尼(Luca Benini)博士给我这个机会攻读博士学位。在他的小组中,在这段时间内为他的持续指导和支持,以及在探索自己的想法的同时给我的自由和信任。我也非常感谢他对我未来的努力的宝贵建议和支持。我还要感谢我的共审见者BenjamínBéjarHaro博士和Maurizio Valle博士对我的工作的兴趣,并为我提供了许多关于本文的建设性评论。特别感谢我的第二位顾问Michele Magno博士向我介绍了小组和学术界,支持我并推动我的学术生涯,以及他在学术界和生活中的所有技巧。我的感激之情也感谢卢卡斯·卡维格利(Lukas Cavigelli)博士在我在实验室的早期阶段对我进行监督,并说服我采取了这一博士学位,这真是真正令人满意的生活体验。我也非常感谢Gagandeep Singh博士的拥抱和支持我的项目想法,并为他提供的所有建议和支持,并继续给我。我还要对Giacomo Indiveri教授表示衷心的感谢,在他的小组的学期项目中,我与他一起进行了学术研究的第一步,他的建议和支持一直是,并且对我过去和将来的旅程至关重要。
Co‐PI(s): Matt Churchfield 1 , Marc Day 1 , Georgios Deskos 1 , Caroline Draxl 1 , Nicholas Hamilton 1 , Marc Henry de Frahan 1 , Jon Rood 1 , Ashesh Sharma 1 , Ganesh Vijayakumar 1 , Ann Almgren 2 , Aaron Lattanzi 2 , Jean Sexton 2 , Stuart Slattery 3 , Melissa Allan‐Dumas 3 , Matt Norman 3 , Mark Taylor 4 , Andrew Bradley 4 , Lawrence Cheung 4 , Philip Sakievich 4 , Maciej Waruszewski 4 , Sonya Smith 5 , Lian Shen 6 , François Blanchette 7 1: National Renewable Energy Laboratory, Golden, CO 80401 2: Lawrence Berkeley National Laboratory, Berkeley, CA 94720 3:橡树岭国家实验室,橡树岭,田纳西州37830 4:桑迪亚国家实验室,阿尔伯克基,新墨西哥州87185 5:霍华德大学,华盛顿特区,华盛顿特区,20059年6月6日:明尼苏达州明尼苏达州,明尼苏达大学,明尼苏达大学55455 55455 7:加利福尼亚大学,加利福尼亚大学,CA 95343的一部分,一部分,一部分,一部分劳动,一部分征集了一部分,一部分劳动,一部分劳动,一部分劳动,一部分劳动,一部分是一部分,一部分是一部分劳动。 (DOE'S)浮动海上风力射击旨在降低到2035年浮动海上风能的水平成本(LCOE)。Flowmas Energy Earthshot Research Center(EERC)将提供必要的基础研究,以实现这一积极的时间表的突破。对气象海洋环境中浮动海上风力涡轮机的条件,负载和动力学的了解和模型非常缺乏,尤其是在极端情况下。一个人无法完全优化知识渊博的系统,并且不存在足够的模型。Flowmas从数学,计算和大气 - 科学背景中融合了研究人员,以更好地模型,并更好地理解从气候尺度到风力涡轮机浮动平台和实现风能所需的叶片的动态。Building on DOE investments in high‐fidelity models for climate and land‐based wind energy that can exploit exascale‐class computing, FLOWMAS researchers will create a suite of high‐fidelity codes for floating offshore wind energy that incorporates the microscale (i.e., wind turbines, floating platforms, and mooring systems), mesoscale (i.e., regional weather dynamics), and global/climate scales.研究人员将使用高更多的模拟和正在进行的DOE支持的现场活动来创建数据驱动的替代模型,这些模型在计算上效率高,并且可以探索许多系统条件,并且在长时间的时间内无法使用计算昂贵的高档高档模型无法访问。最后,开发的模型将利用Exascale计算的功率来创建对浮动海上风能系统的新理解,包括气候变化将如何影响海上风能资源,浮动风电场和涡轮机唤醒动态的物理,以及在操作和极端事件中浮动风力涡轮机的负载和动态。
i. 科学卓越 ii. 工程能力 iii. 人才 iv. 创新与企业伙伴关系 四大战略重点的更多细节如下: i. 科学卓越 第一项重点侧重于加强量子研究高影响力领域的科学卓越性,例如量子通信和安全、量子处理器和量子传感。 量子技术中心 (CQT) 成立于 2007 年 12 月,是新加坡国立大学主办的首个卓越研究中心。在 NQS 下,CQT 将提升为量子技术的旗舰国家研发中心,以协调全国各地的研究人才。该中心将在不同的机构设有节点,包括 A*STAR、新加坡国立大学 (NUS)、南洋理工大学 (NTU)、新加坡科技设计大学 (SUTD) 等,开展研究人员主导的研究,使新加坡走在科学研究和创新的前沿。CQT 还将培训攻读博士和硕士学位的科学家和工程师。 ii.工程能力 第二大重点是加强新加坡在量子技术方面的工程能力,以加速将量子研究转化为现实世界的解决方案。以下国家级量子计划是推动转化量子活动的重点:
美国陆军医学研究与发展司令部于 4 月 4 日至 6 日在马里兰州德特里克堡举办了第二届年度能力日活动。此次活动旨在突出该司令部在支持和扩大军事医学范围方面发挥的关键作用,吸引了来自美国国防部、联邦政府各部门和各种私营部门实体的 200 多人参加,进行了一系列广泛而身临其境的科学演讲和引人入胜的产品演示。“这次活动的目的是让每个人都了解我们一直在做的事情,”准将说道。MRDC 和德特里克堡指挥官 Tony McQueen 将军谈到了此次活动的总体目标。“我们试图关注的关键事项之一是不要打最后一场冲突。相反,我们的目标是创造、开发和获取工具,以帮助我们打下一场战斗,应对下一个威胁。”此次活动的主要焦点是 MRDC 累积努力的实际应用,与会者有机会了解各种当前和新兴的医疗设备和解决方案,以及上述物资的采购和开发途径。经过上午与指挥领导层的讨论——会谈主要集中在 MRDC 的目标、范围和影响——与会者观看了许多实景战斗场景,其中展示了下一代战场医疗技术。其中一个场景正式称为“医疗机器人团队”演习,其中有一只机器狗(其开发人员将其命名为“Spot”)与一名人类士兵一起为战场伤员提供医疗护理。在该计划的后期,在一个规模更小、更人性化的环境中,与会者有机会与来自 MRDC 所有七个附属实验室的士兵和科学家就许多不同主题进行交流。“这种创新太神奇了,”空军医疗准备局战略和生命周期部门负责人 Jeremy Braswell 中校说道。“在我之前的部署中,我们一直在想什么时候才能达到这种现代化水平。现在我们就在这里——我亲眼目睹了这一切。”此次活动期间,作战人员防护、性能和弹性概念成为焦点,MRDC 副主席
买家 1 卖家 1 地址 价格 Cella-Delcore, Carmela Cella Mafalda M Est 1029 Winthrop Ave $720,000 Kortz, Erik Shaw, Jill V 103 Lynnway $565,000 Rupp, Jessica Hamlin, Cassandra L 1133 N Shore Rd #304 $474,900 Bani, Ulian Lee, Tina 175 Ward St #40 $290,689 Interiano-Pena, Henry O Benhammou, Moad 30 Oxford Park $950,000 Caruccio, Paul Barbanti-Taylor Irene Es 354-360 Revere Beach Blvd #401 $653,500 Burke, Winfried Morgan, William J 376 Ocean Ave #1214 $530,000 Zhou, You Guarino, Richard 382 Ocean Ave #704 $400,000 Nguyen, Mihn K Dyer Ft 42 Furness St $739,900 Naar, Djilali Denise E Cantin 2022 T 474 Revere Beach Blvd #401 $455,000 Gss Realty LLC Andrews, Jeffrey 70 Kingman Ave $180,000 Gonzalez, Omar B Sewall Street T 76 Sewall St $740,000 考虑出售?请致电您信任的 Revere 房地产经纪人
Acq O&M - 收购相关运营与维护 ACAT - 收购类别 ADM - 收购决策备忘录 APB - 收购计划基准 APPN - 拨款 APUC - 平均采购单位成本 $B - 十亿美元 BA - 预算授权/预算活动 Blk - 区块 BY - 基准年 CAPE - 成本评估与计划评估 CARD - 成本分析要求说明 CDD - 能力开发文件 CLIN - 合同项目编号 CPD - 能力生产文件 CY - 日历年 DAB - 国防收购委员会 DAE - 国防收购执行官 DAMIR - 国防收购管理信息检索 DoD - 国防部 DSN - 国防交换网络 EMD - 工程与制造开发 EVM - 挣值管理 FOC - 全面作战能力 FMS - 对外军售 FRP - 全速率生产 FY - 财政年度 FYDP - 未来年份国防计划 ICE - 独立成本估算 IOC - 初始作战能力Inc - 增量 JROC - 联合需求监督委员会 $K - 数千美元 KPP - 关键性能参数 LRIP - 低速率初始生产 $M - 数百万美元 MDA - 里程碑决策机构 MDAP - 主要国防采购计划 MILCON - 军事建设 N/A - 不适用 O&M - 运营与维护 ORD - 运营需求文件 OSD - 国防部长办公室 O&S - 运营与支持 PAUC - 项目采购单位成本