可再生能源的生长需要灵活,低成本和有效的电气存储系统,以平衡能源供应和需求之间的不匹配。当电力生产大于需求时,用热泵(HP)将电能(或泵送的热能储能)转换为热能;当电力需求超过生产时,Carnot电池会从两个热存储库(Rankine模式)中产生电力。经典的Carnot电池体系结构的实现不超过60%的往返电效率。但是,使用废热回收(热集成的Carnot电池)的创新体系结构能够达到比热泵的电力消耗大于电动泵的电动循环的电力生产(功率为电力比率),从而提高了技术的价值。可以证明,这种技术的优化是电力最大化和功率功率比(取决于电价等)之间的权衡。在本文中,描述了使用可逆的热泵/有机兰金循环(HP/ORC)的热整合Carnot电池原型的完整开发。它包括选择名义设计点,体系结构,组件和尺寸的选择。第一次实验活动显示,圆形电能比为72.5%,ORC效率为5%(温度提升等于49 K),HP的COP为14.4(温度提升等于8 K)。此外,分析了主组件(体积机和热交换器)的性能。这些结果非常令人鼓舞,因为可以通过优化体积机,更大规模地工作,优化控制和热绝缘,可以轻松提高性能(可能高达100%的往返电能比率)。
通过活化的单体机制诱导聚合。光酸发生器(PAGS)46对光刻和微电子发育的e;但是,PAG介导的聚合化不是可逆的,仅提供对聚合物启动而不是链生长的时间控制。为了克服这一挑战并发展可逆的光acid,Boyer和De Alaniz独立使用了基于Merocyanine的催化剂。47,48然而,螺旋罗蛋白酶慢慢的热恢复为质子化的丙氨酸限制了这些系统中时间控制的程度。同样,Hecht和Liao都报道了可拍摄的ROP的催化剂,49,50,但在这些系统中也遇到了与催化效率和可逆性有关的局限性。在此基础上,可以通过外部刺激可逆地激活ROP的酸催化剂仍然是一个挑战。我们假设,可以通过设计可逆的,氧化还原控制的酸来实现对酸催化性的阳离子ROP的时间控制,该酸可以通过氧化状态的变化来改变其p k a。51,52特定的cally,通过将铁链接到酸性官能团53,54中,我们设想了一个系统,在该系统中,P k a会在氧化中从Fe(II)到Fe(II)降低,然后通过活化的单体机制启动ROP(图1)。重要的是,将铁金属物种还原回二茂铁将恢复分子的原始酸度并停用催化剂,可消除可逆的终止,从而对聚合进行时间控制。
世界对化石燃料的依赖是主要的能源来源,导致气候变化和全球变暖。可再生能源被视为维持全球温暖以下2 C的关键解决方案。气候变化和全球变暖的有害影响已在过去十年中推动了世界,从而大规模地部署了可再生能源技术,包括风能,太阳能PV,集中太阳能,生物质等。然而,可再生能源的间歇性,前的太阳照射和风速,在低或没有太阳辐射和风能时,需要储能技术来满足能量的能量。当没有太阳照射和风时,可以存储太阳能PV或风能的多余能量。化学能源储能技术(电力气体)(例如电源器和燃料电池)已通过商业化的一些技术(例如质子交换膜(PEM))引起了人们的关注[1]。由于高气体能量密度,力量到燃气系统很有吸引力。高温可逆的氧化物燃料电池(RSOFC)最近由于电解能力和燃料电池(发电)在一台设备中的功能而引起了人们的关注。RSOFC比常规存储技术具有优势,适应性,能力(功率大小的多功能性和两种操作模式中的能量能力)和高效率[1]。单个堆栈的使用可通过降低植物组件(BOP)来提供较低的资本支出,因为大多数组件都用于电解和燃料电池运行中。然而,在电力到达电力系统中设想的主要能源载体具有巨大的储存和运输成本,与其高光度和低体积密度有关,而作为氢载体的氢载体具有低体积密度和低易光性。与一日储存(v /kg)相比,氢的储存量高约24倍,储存15天的储存量是36倍,在182天的存储空间中,储存量的24倍[2]。因此,氢的生产和随后转化为氨储存的氨的转化引起了很多关注,因为氨被视为可持续燃料(未来的液态天然气),以使能源部门脱碳,并且难以减少工业。氨气适合运输,以满足液化天然气目前满足的一些能源需求,包括电力,运输,供暖等以及目前用于肥料生产的用途。最近,已经有关于电力系统的氨的建模研究。siddiqui和Dincer [3]开发了一种基于太阳能的集成能量系统的热力学模型,该模型由太阳能PV工厂,PEM电解器,Press-Press-Ar-Press-wister-wister-wister-wister-swing Adsoraging(PSA)单位,氨合成单元
我们提出了一种统一的理论,可以解释癌症复发,治疗性抗性和致死性。该理论的基础是形成了多倍体和非整倍性癌细胞,多层酶癌细胞(PACC),它们通过进入细胞周期停滞状态,避免了全身治疗的毒性作用。该理论与已经发生的经典相关的致癌突变无关。PACC通常被视为衰老或垂死的细胞。我们的理论指出,治疗性抗性是由PACC形成驱动的,PACC形成是通过访问多倍体程序来启用的,该程序允许非整倍体癌细胞将其基因组含量加倍,然后进入非分散的细胞状态以保护DNA完整性并确保细胞存活。消除压力后,例如化学疗法,PACC会经过解倍倍化化并产生抗性后代,从而构成了肿瘤内大部分癌细胞。
1 Wetsus,欧洲可持续水技术卓越中心,荷兰8911 Ma Leeuwarden; ragne.parnamae@wetsus.nl(R.P.); Jan.post@wetsus.nl(J.P。); Michel.saakes@wetsus.nl(M.S.)2 Dipartimento di Ingegneria,Universit - Degli Studi di Palermo,Viale Delle Scienze Ed。6,90128意大利巴勒莫; andrea.culcasi@unipa.it(A.C。); Alessandro.tamburini@unipa.it(A.T。)3 Aquabattery B.V.,Lijnbaan 3C,2352 CK Leiderdorp,荷兰; janwillem.vanegmond@aquabattery.nl(W.J.V.E.); jiajun.cen@aquabattery.nl(J.C。); emil.goosen@aquabattery.nl(例如); David.vermaas@aquabattery.nl(D.A.V.)4伦敦帝国学院,伦敦化学工程系,南肯辛顿校园,伦敦SW7 2AZ,英国5号化学工程系,代尔夫特技术大学,范德尔·马斯维格大学,荷兰范德尔·马斯维格9,2629 HZ DELFT ); Michele.tedesco@wetsus.nl(M.T。)4伦敦帝国学院,伦敦化学工程系,南肯辛顿校园,伦敦SW7 2AZ,英国5号化学工程系,代尔夫特技术大学,范德尔·马斯维格大学,荷兰范德尔·马斯维格9,2629 HZ DELFT); Michele.tedesco@wetsus.nl(M.T。)
在许多应用中高质量晶状膜提供高质量薄膜的能源合成。在这里,我们通过利用扩散聚集过程来设计一种无毒溶剂方法来生产高度结晶的Mapbi 3钙钛矿。异丙醇溶液基于三碘化甲基三碘二碘(MAPBI 3),在这种情况下,晶体生长起始开始于远离平衡的不稳定悬浮液开始,随后的结晶驱动于溶解度参数。通过扫描透射电子显微镜(Stem)监测晶体的形成,观察到随着时间的流逝而演变成具有高晶体纯度的大晶粒,生长的小结晶中心。茎模式下的能量色散X射线光谱(EDS)显示新形成的晶粒中有富含Pb的核心壳结构。纳米光束电子衍射(NED)扫描定义的PBI 2晶体在PB富壳中具有新形成的晶粒中的单晶Mapbi 3核心。一周搅拌后,相同的聚集悬浮液仅表现出仅具有单晶体MAPBI 3结构的晶粒。NED分析显示了从核心壳结构到单晶晶粒的动力学缓慢过渡。这项研究对可能导致亚化学计量晶界影响的因素提出了有影响力的见解,从而影响太阳能电池性能。另外,已经提出了钙钛矿晶粒的结构,形态和光学特性。随后通过在低空烤箱中蒸发溶剂来制备高度结晶颗粒的粉末。薄膜Mapbi 3太阳能电池是通过溶解粉末并将其涂在经典制造路线中制造的。MAPBI 3太阳能电池的冠军效率为20%(19.9%),平均效率约为17%,而滞后效应低。在这里突出了制造无毒溶剂的材料结构的策略。这里设计的单晶增长既可以为材料的货架存储以及设备的更灵活的制造。该过程可能会扩展到其他字段,中间多孔框架和大型表面积将对电池或超级电容器材料有益。
尽管使用 FMDV 疫苗已成功降低疫情爆发的频率 5 ,但美国和欧洲并未实施预防性疫苗接种,因为这会对动物和动物产品的国际贸易造成限制,并且无法在接种疫苗的人群中检测出携带者 6 。疫苗接种的另一个危害是 FMDV 疫苗生产使用活病毒,这存在控制风险。有证据表明,一些 FMD 疫情实际上源于疫苗,因为在配制之前灭活不完全 7 ,或者是病毒从实验室泄漏 8 。这些事件凸显了对更有效控制方法的需求,事实上,不需要在任何生产阶段感染传染性 FMDV 的疫苗正在研发中 9 。另一种策略是设计抗 FMDV 药物。