空对空热泵是用于房屋和商业建筑的一种经济高效且节能的加热解决方案,但是本研究仅关注国内应用中的空对空热泵。这些系统通过从外部空气中提取热量,即使在寒冷的天气中也可以直接转移到室内空气中。他们不使用中央供暖系统内循环的水。然而,与空对水系统相比,归因于可逆的空对空系统的英国国内热泵市场的份额仍然低于5 6。空对空和空对水热泵都在空气源热泵的一般伞下分类。空气对水系统的工作方式不同,通过将热量从外部空气转移到管道中的建筑物周围运输的水,然后通过散热器或地板加热等热量发射器将热量转移到房间中,否则称为湿系统。
摘要:表观基因组定义了不同细胞类型中独特的基因表达模式及其导致的细胞行为。表观基因组失调与各种人类疾病直接相关。表观基因组编辑能够针对基因组位点特异性地靶向表观基因组修饰物,从而直接改变特定的局部表观基因组修饰,为表观基因组调控机制研究以及新型表观基因组疗法的开发提供了革命性的工具。可诱导和可逆的表观基因组编辑提供了独特的时间控制,这对于理解表观基因组调控的动力学和动力学至关重要。本综述总结了使用小分子或光作为诱导物实现表观基因组编辑的条件控制的时空特异性工具的开发进展及其在表观遗传研究中的应用。
摘要:在日常生活中,假冒伪劣产品特别是货币、药品、食品、机密文件等,会带来十分严重的后果,发展具有多层次安全性的防伪认证技术是克服这一挑战的有力手段。在各种防伪技术中,荧光防伪技术以其材料来源广泛、成本低廉、使用简便、隐蔽性好、响应机制简单等特点,被广泛用于打击造假者。螺吡喃因具有可逆的光致变色性质,在防伪和信息加密领域受到科学家的青睐。本文对目前可用的螺吡喃基荧光材料从设计到防伪应用进行了综述,旨在帮助科学家设计和开发具有高安全性、高性能、响应速度快、防伪等级高的荧光防伪材料。
要增加电动飞机的范围,需要电池的高能密度,并且为了取消和着陆,需要高输出性能。但是,电池的能量密度和输出性能通常在权衡关系中。锂离子电池的能量密度主要取决于可以用阴极和阳极材料可逆的锂离子量的量。因此,正在对可以可逆地存储更多锂离子的材料进行积极研究。最近,为了使用车辆,正在积极进行NI的研究。除了满足高速放电,长寿命和其他高性能因素外,还必须使用高功能材料,例如高容量活性材料(富含镍)和高导电性材料并优化电池设计。在这项研究中,使用的锂离子电池是为应用于个人空中车辆的,可以在下面的图1中确认,即使在高速放电下也可以保持排放能力。
摘要:提高住宅和非居民建筑的能源效率是发展未来可持续城市的关键点。为了达到这样一个目标,综合采用的干预措施(例如,在立面和玻璃上)是不够的,并且必须努力达到完全可再生能源的能源产生。在这种情况下,本文讨论了具有太阳能和生物质的系统的适用性,作为在办公楼中供暖,冷却,冷却,家庭热水和发电的不同气候中的主要能源。能量系统包括带有热电发电机的太阳能热收集器,生物质锅炉,可逆的热泵/有机Rankine循环和吸附冷却器。结果表明,该系统可以在所有能源需求中以高于70%的可再生能源份额运行,即使在北部地区,也只能由太阳能和生物质来源提供的总体能源需求的80%。
近年来,靶向嵌合体(Protac)技术的蛋白水解已成为通过利用细胞自己的破坏机制来清除与疾病相关蛋白质的最有希望的方法之一。要获得感兴趣的蛋白质(POI)的成功降解,杂功能的Protac分子必须首先穿透到细胞中,然后靶向靶标和POI-PROTAC-E3连接酶复合物的靶标和形成。基于这种理解,对细胞渗透性和细胞靶标的评估评估对于评估Protac候选物的疗效至关重要。Protac分子可以分类为非共价和共价,并且可以将共价Protac进一步分为不可逆的和可逆的共价。在这里,我们提出了一个高通量测定法,以使用激酶结合测定和纳米伯特目标参与平台定量测量其细胞内积累来确定不同类型的BTK Protac。
face图像是可用于识别个人并推断出有关私人信息的丰富信息来源。为了减轻这种隐私风险,匿名化对清晰的图像进行了转换来混淆敏感信息,同时又有一些实用程序。尽管发表了令人印象深刻的主张,但有时不会以令人信服的方法来评估它们。逆转匿名图像以类似于它们的真实输入(甚至可以通过面部识别方法识别)代表了有缺陷的匿名化指标。最近的一些结果确实表明,对于某些方法是可能的。但是,尚不清楚哪种方法是可逆的,以及原因。在本文中,我们对面部匿名化可逆性现象进行了详尽的研究。除其他外,我们发现15个经过测试的面部匿名化中有11个至少部分可逆,并强调重建和反转如何是使逆转成为可能的基本过程。
DNA 分子中核苷酸的脱氧核糖部分可以充当量子逻辑门,其中每个核苷酸的 C2-endo 和 C3-endo 构象之间的对映体位移发生在电子自旋量子比特的逻辑和热力学可逆情况下,这些量子比特相干地保持在拓扑绝缘的 DNA 晶体纳米结构内,并沿着 pi 堆叠核苷酸碱基对的离域电子相干地传导。C2-endo 和 C3-endo 构象之间的对映体对称性在逻辑和热力学上是可逆的,因为它充当对称性破坏的 Szilard 引擎,该引擎实际上是由其运作信息的物理性有效构建的,因此不需要信息擦除来维持功能。这种量子逻辑门类似于 Toffoli 门,它跨越适合 Landauer 极限的能量屏障运行,滚动 DNA 碱基对,从而破坏 DNA 分子片段上的 pi 堆叠相干性,从而实现信息的量子到经典转变。
摘要:RNA修饰是由于其新定义的RNA调节作用在细胞途径和致病机制中的新定义的RNA调节作用而迅速引起注意的多样,动态和可逆的转录本改变。“表演组学”的令人兴奋的新兴领域主要集中于研究最丰富的mRNA修饰,N6-甲基丹宁(M 6 A)。M 6 A标记,类似于许多其他RNA修饰,严格受到所谓的“作家”,“读取器”和“橡皮擦”蛋白质的调节。编码这些调节蛋白表达和M 6 A水平的基因丰富性在几个癌症领域具有诊断和预测工具的巨大潜力。本综述探讨了我们当前对神经胶质瘤生物学中RNA改良的理解,以及上次转录组学开发新的诊断和预测性分类工具的潜力,这些工具可以对这些高度复杂且异构性脑肿瘤进行分层。
在本文中,我们证明了包含Midchain光透明部分的线性聚合物的光化学裂解在很大程度上取决于链长。基于原硝基苯基(ONB)可逆的可逆添加 - 转移链转移剂,良好定义的聚丙烯酸甲酯)S(Mn = 1.59-67.6 kg mol – 1,= 1.59-67.6 kg mol – 1,= 1.3-1.4)。在λmax处的光解= 4硝基苯基部分的350 nm导致同等大小的聚合物段的产生。通过一阶动力学可以很好地描述ONB驱动的聚合物碎片的速率,以非线性方式随着分子量的增加而大大增加,这可能是由熵考虑引起的,并与理想的链模型进行了比较。当前的研究表明,聚合物光解取决于聚合物链的长度,对光电网络设计具有关键影响。