足够的碎片使电路通电并打开驾驶舱灯。现在有检测器可以自动清除正常磨损颗粒。但是,频繁的自我清除可能表明存在早期问题。因此,清除操作的频率指示(无论是自动的还是飞行员启动的)都将提供有用的诊断信息。基于振动信号分析的更复杂的监测技术也可用,并且可以纳入监测系统。
未来电动飞机和混合动力飞机对电力的需求不断增加,机载系统的高功率电力转换研究工作一直在进行中。航空系统的安全关键性质使航空电力转换器的可靠性成为关键的设计考虑因素。本文研究了电力电子系统的可靠性,重点研究了关键子部件的寿命限制因素。为起动发电机驱动转换器建模了不同系统电压水平下的电压源功率转换器的可靠性。一个关键的观察结果是,Si IGBT 器件足以满足低压和中压系统(高达 540 V)的可靠性要求。在更高的系统电压(高于 540 V)下,使用 Si IGBT 进行设计需要多级拓扑。在恒定功率曲线驱动中,转换器直流链路中薄膜电容器的磨损故障对系统可靠性的影响最小。在没有增强电压降额的多级拓扑中,系统可靠性主要受宇宙射线引起的随机故障影响。仿真结果表明,在高系统电压 (810 V) 下,带有 SiC mosfet 的 2 L 拓扑在可靠性方面优于基于 Si IGBT 的 3 L 拓扑。
对于特定设备,存在大量的可靠性经验。它包含两种计算组件级故障率的基本方法,即“零件应力法和零件计数法”。零件计数法只需要有限的信息(例如组件类型、复杂性和零件质量)即可计算零件故障率。手册的零件计数部分是通过将更复杂的零件应力法的模型因子分配给通常预期的略微保守的估计值而得出的。所有特定的默认值均在手册的附录 A 中提供。零件应力法需要更多信息(例如外壳或结温以及电气工作和额定条件)来执行故障率计算。在手册制定之前,每个承包商都有自己独特的数据集,必须完全了解其来源,然后才能进行有意义的设计比较。
航空燃气涡轮发动机的发展对发动机控制系统提出了越来越高的要求,以提高推力并改善燃油消耗。这些要求导致了电子控制系统的广泛使用。这种系统的早期版本采用了监控概念,于 20 世纪 70 年代推出,目前在运行的许多飞机上都能找到这种系统。目前运行的 JAS 版本采用了这种概念。然而,监控概念并不能完全满足大多数现代发动机的要求,这导致了 20 世纪 80 年代全权数字电子控制 (FADEC) 概念的出现。 FADEC 系统控制发动机所需的所有功能,并引入了许多改进,例如:(i) 可以实施现代控制理论中的复杂技术,这些技术既可以提高性能,又可以提高可靠性,(ii) 由于有限使用流体力学而减轻重量,以及 (iii) 可以实施内置维护支持,从而降低维护成本并提高系统可靠性。正如这些示例所示,FADEC 支持提高性能和可靠性并降低总成本的努力。FADEC 系统目前在许多飞机上运行,例如:新型军用飞机 F-18E/F 和欧洲战斗机以及民用飞机空客 320、321 和波音 777。
面临高风险并在纯数字领域运营的组织,例如计算机安全和许多金融服务,必须满足两个相互矛盾的目标:他们需要大规模和快速地识别数字威胁,同时避免自动化处理导致的错误。对高可靠性组织的研究发现,同时实现这些目标面临多重挑战,因为自动化往往使组织的运营“盲目”,无法从容应对高风险领域不断变化的复杂情况。在数字运营中,一个特殊的挑战来自“框架问题”,即算法无法适应其开发人员最初的认知框架中未确定的环境。在一家计算机安全公司 (F-Secure) 内进行了一项探索性、理论生成案例研究,以研究在数字领域行动的组织如何通过缓解框架问题来实现高可靠性。本文探讨了数字化组织操作的认知和实用特征,以及这些特征如何应对框架问题。集体正念被认为是在这样的社会技术环境中出现的,通过精心分层的系统组合(人类)有意识和(数字)无意识的操作,而组织的核心操作仍然是数字化和算法化的。研究结果指出了迄今为止与数字化组织相关的未探索的可靠性挑战,以及克服和/或缓解这些挑战的几种相关方法。
电力行业在追求雄心勃勃的清洁能源和脱碳目标的过程中面临着前所未有的挑战和新的客户期望,这推动了全国范围内更多可再生能源、电池存储和电动汽车的部署。对于 ComEd 来说尤其如此。我们正在与伊利诺伊州商业委员会、众多利益相关者和客户倡导者合作,规划实施伊利诺伊州的《气候与公平就业法案》,该法案使该州走上了到 2045 年实现 100% 清洁能源的道路。我很荣幸能够在所有 ComEd 社区和子孙后代创造更健康的环境中发挥关键作用,我们已准备好迎接这一时刻。自 2012 年我们开始电网现代化和智能电网计划以来,我们显著提高了整个伊利诺伊州北部社区的整体可靠性,避免了超过 1700 万次客户中断。在 2022 年的前三个月,我们提供了 ComEd 百年历史上第一季度最可靠的电力服务。我们致力于提供强大的可靠性——不仅因为我们的客户期望它——而且因为安全可靠地整合满足客户需求和伊利诺伊州清洁能源目标所需的大规模可再生能源至关重要。我们很高兴地报告,根据 J.D. 的衡量,ComEd 住宅客户的整体满意度。Power & Associates 自 2012 年以来增加了 167 分,我们是 J.D. 中所有 57 家“大型”公用事业公司中进步最大的第三家公用事业公司。电力研究。这种进步反映了通过创新、许多不同的工作流以及 ComEd 6,100 多名敬业的女性和男性的不懈努力所产生的积极影响。以经济实惠的方式进行流程改进和高效的战略增强是系统进步和可靠性的关键。并行调度、风暴流程增强和战略数据分析等改进在 2021 年产生了积极影响。我们继续通过直接针对可靠性和弹性的战略投资积极提高配电系统的性能,从而使我们的客户受益。系统性能投资重点:
MIL-HDBK-217E 微电路部分中的故障率预测模型,以确定它们是否适用于最先进的设备;(2) 根据需要修改或推断现有模型以反映当前和未来
估计每次收集这些信息的公共报告负担超过 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请发送有关此负担估计或此信息收集的任何其他方面的评论。包括减轻此负担的建议,发送至 Woshington 总部服务部。信息运营和报告理事会,1215 Jefferson Davis Highwoy。1204 套房。弗吉尼亚州阿灵顿 22202-4302。并寄至管理办公室预算、文书工作减少项目 10704-0188),华盛顿特区 20503。1.仅供机构使用(留空)2.报告日期 1997 年 3 月
[ 直流控制器是一种微电子混合设备。采用了 MIL-HDBK-217B 通知 2《电子设备可靠性预测》第 2.1.7 节中的混合故障率预测模型和程序。这种预测方法需要识别单个电子零件和基板,以及每个零件的单独电应力数据。热应力是由混合封装温度和零件功率耗散引起的。
中心自 1963 年起聘用他为航空技术专家。目前,作为任务安全与保障办公室设计、分析和故障指标工作的兼职,他负责产品保证管理,并教授课程以协助 NASA 的培训需求。Lalli 先生毕业于凯斯西储大学,获得理学学士学位和理学硕士学位电气工程。1959 年,作为 Case 的研究助理,后来在 PicatinnyArsenal,他帮助开发了电子引信和特殊设备。1956 年至 1963 年,他在 TRW 担任设计、领导和集团工程师。Lalli 先生是俄亥俄州的注册工程师,也是 Eta Kappa Nu、IEEE、IPC、ANSI 和 ASME 的成员。