同时,通用航空领域用于开发新解决方案的资源有限,导致目前使用的许多发动机类型仍未采用 FADEC 技术。通用航空类别包括各种应用,从用于娱乐飞行的小型飞机到农用飞机,再到用于运输乘客的飞机。这些应用可能因飞机的大小/设计(和安全要求)而有很大差异,也与特定飞机执行的飞行类型不同。尽管 FADEC 最初是为涡轮发动机设计的,但最近在配备活塞发动机的小型飞机中也越来越受欢迎。在这个领域,像 Continental 和 Lycoming 这样的活塞发动机制造商越来越多地在其发动机上使用这项技术。Lycoming 使用其 iE2 FADEC 技术(TO-450、TIO-540-NXT、TSIO-550、TEO-540-A1A 发动机)。大陆航空使用其 PowerLink FADEC(IO-240、IO-360、IO-550、IOF-240、IOF-550、TSIOF-550 发动机)。FADEC 在这方面的主要优势包括发动机控制简单(飞行员可以更多地关注态势感知而不是飞机控制)、更好的问题诊断以及更高的性能和效率。航空用柴油往复式发动机的 FADEC 也受到同样的关注。据 Cox [12] 称,用于此应用的 FADEC 价格在 2500 美元到 7500 美元之间。
存储可靠性对于在其整个生命周期中大部分时间处于存储状态的产品非常重要,例如用于有害辐射检测的警告系统和多种防御系统等。通常,可以获得现场测试数据,但由于信息被屏蔽,串联系统的故障原因并不总是已知的。本文在考虑屏蔽数据的情况下,采用统计分析方法研究了可能存在初始故障的存储可靠性模型。为了优化存储系统屏蔽生存数据的使用,提出了一种基于最小二乘 (LS) 方法和 EM 类算法的串联系统技术。通过应用算法更新测试数据,开发了基于 LS 方法的参数估计程序,然后研究了串联系统组成部件的初始可靠性和故障率的 LS 估计。在指数分布的存储寿命的情况下,提供了一个数值示例来说明该方法和程序。结果应该有助于准确评估生产可靠性、确定生产质量和规划存储环境。关键词 这是一篇根据 CC BY 许可协议开放获取的文章(https://creativecommons.org/licenses/by/4.0/)
NERC 可靠性和安全技术委员会 (RSTC) 通过其小组委员会和工作组,根据 RSTC 章程中规定的程序制定和每三年审查一次可靠性指南。可靠性指南包括行业对影响 BPS 运营、规划和安全的事项的集体经验、专业知识和判断。可靠性指南提供有关特定问题的关键实践、指导和信息,这些问题对于促进和维护高度可靠和安全的 BPS 至关重要。在 NERC 合规注册表中注册的每个实体都有责任维护可靠性并遵守适用的强制性可靠性标准。可靠性指南不是具有约束力的规范或参数,也不是可靠性标准;但是,NERC 鼓励实体根据本指南中规定的实践审查、验证、调整和/或开发程序。实体应详细审查本指南,并结合对其内部流程和程序的评估;这些审查可以强调需要进行适当的更改,并且这些更改应考虑系统设计、配置和业务实践。
• 为提高性能,晶圆工艺技术的快速发展推动了 HKMG 和 FinFET 等可靠性极限。 • 晶圆上新材料的加速引入:铜、超低 k ILD、气隙、氮化氧化物、高 K 栅极电介质和新互连 • 先进的封装和凸块技术:fcBGA、fcCSP、WLCSP、无铅凸块、铜柱、铜线、微凸块、多层 RDL、TSV/Interposer、3D/2.5D、FanOut WLP 封装和 SiP • 新封装材料:增材制造基板、超低损耗电介质、底部填充材料、塑封材料、基板表面处理、无铅和铜凸块等 • 多级应力相互作用使可靠性失效机制变得复杂 • 日益严格的客户要求和应用 • 快速上市需要可靠性设计以减少认证/批量生产时间