客人入住晚数等于入住晚数乘以旅行团人数。这可能受到客人团体规模和入住时长的影响。例如,四人团体入住两晚,则客人入住晚数为八晚,但一位客人入住两晚,则客人入住晚数为两晚。入住晚数是指入住期间入住平台提供的房产或房间的晚数;入住次数是指单次预订入住平台提供的设施的次数,与入住时长无关。
abtract该项目通过使用Unity ML代理来训练AI模型[1],解决了在不同行星环境中模拟火箭着陆的挑战。对空间探索至关重要的火箭的可重复性需要精确控制和适应性的重力条件。我们提出了一种解决方案,将AI驱动控件与交互式用户输入相结合,以创建灵活且逼真的火箭着陆模拟器。使用的机器学习方法来开发能够处理复杂控制任务的模型,并使用强化学习来适应地球,火星和月球的不同环境。实验以评估模型在每个环境中进行调整和执行的能力,分析关键的火箭参数(例如质量和推力)如何影响各种引力和大气条件的性能。这种方法提供了对模型的适应性和优化潜力的见解。[2]。最重要的发现是,由于更快的下降速度,AI在地球和月球上表现良好,但需要在火星上进行进一步调整[3]。我们的方法为研究可重复使用的火箭技术提供了一个引人入胜的教育平台,使其成为学术和实际应用的宝贵工具。k eywords机器学习,火箭,着陆,加固学习1。在太空探索中的介绍性可重复使用性已成为一个重点,尤其是当SpaceX等公司证明了与重复使用火箭相关的巨大成本和时间[4]。实现这一目标涉及复杂的控制系统,这些系统必须准确地说明许多变量,例如燃料水平,大气条件和推力幅度,以确保成功着陆。当前的模拟虽然高级,但通常缺乏在多个天体上复制这些条件的灵活性和可伸缩性。我们的项目通过利用AI和先进的物理模拟来解决这一差距,以模仿不同环境(例如地球,火星和月球)的火箭登陆,这些火箭登陆由于其不同的引力力而引起的明显挑战[5]。这个问题很重要,因为可重复使用的火箭技术的进步可以大大降低任务成本,从而使长期探索更容易访问(Reddy,2018)。此外,对空间和人工智学感兴趣的学生和研究人员需要
关于 HMC Capital HMC Capital 是一家领先的澳大利亚证券交易所上市多元化另类资产管理公司,专门为个人、大型机构和超级基金提供高信念和可扩展的实物资产战略。HMC 管理着超过 125 亿美元的资产管理规模,涉及房地产、私募股权、能源转型、私人信贷和数字基础设施。我们拥有一支经验丰富、团结一致的团队,拥有深厚的投资和运营专业知识。我们的不同之处在于我们能够执行大型、复杂的交易。这支撑了我们自 2019 年 10 月上市以来管理的基金规模的快速增长以及创造超额回报的记录。
原子、分子和光学 (AMO) 物理学一直处于量子科学发展的前沿,同时为现代技术奠定了基础。随着对许多原子进行量子控制以实现工程多体状态和量子纠缠的能力不断增强,一个关键问题出现了:第二次量子革命以及无处不在的纠缠应用将对基础物理学产生什么关键影响?在本文中,我们认为,基础物理学和新应用的一个引人注目的长期愿景是利用量子信息科学的快速发展来定义和推进测量物理学的前沿,为基础发现提供强大的潜力。随着容错量子计算和纠缠量子传感器网络等量子技术变得比今天的实现更加先进,我们想知道这些工具可以打开哪些基础科学的大门。我们预计,一些最有趣和最具挑战性的问题,如引力的量子方面、基本对称性或超出最小标准模型的新物理学,将在新兴的量子测量前沿得到解决。
需要使用多种条件和重复对大量样本进行分析才能获得足够的统计功效。然而,大规模定量蛋白质组学分析的样本制备仍然是一个挑战。6由于蛋白质组学工作流程通常涉及多步骤的样本制备,手动处理数百个样本不仅耗时,而且还会引入影响整体技术可重复性的变异。因此,样本制备自动化作为一种通过标准化样本制备来提高可重复性的解决方案越来越具有吸引力,因为它可以减少时间和成本。与 MS 耦合的细胞热转移分析 (CETSA) 也称为热蛋白质组分析 (TPP),已成为一种流行的方法,用于根据配体诱导的蛋白质热稳定性变化来识别药物靶标和非靶标。 3,7 – 12 经典 TPP 通常涉及十个温度点的实验,每个温度点每个条件下有两个重复实验,以估计热熔化温度 ( T m ) 的变化。这需要准备 40 个样品并用串联质谱标签 (TMT) 标记,然后进行离线分馏步骤。为了减少样品数量并提高分析通量,出现了新形式的热变化分析,例如蛋白质组整体溶解度变化 (PISA)、13 等温变化分析
CESC 是印度第一家自 1899 年以来完全整合的电力公用事业公司,在加尔各答和豪拉发电和配电。与 ISGF 和 Powerledger 合作的试点项目的总体目标是探索和开发适合平台即服务的商业模式。该平台即服务计划作为加尔各答可扩展的区块链点对点 (P2P) 能源交易平台提供给 CESC 客户,该平台可在 CESC 产品组合中提供。该试点旨在启用 Powerledger 的点对点交易平台,并使用 1,000 个可通信型仪表运行为期 6 个月的试点。该试点执行了各种试点测试场景,包括固定 P2P、优惠和动态价格交易场景。该试点还评估了 DISCOM (CESC)、产消者和消费者的利益。该项目于 2022 年 7 月上线,拥有 1000 多名产消者和消费者。
摘要:二氧化钛纳米管阵列 (TNA) 纳米系统在药物输送应用中得到了广泛的讨论,它可为靶向癌症治疗中化疗药物的持续释放提供优势。本研究分析了顺铂化疗药物 (CDDP) 在 TNA (CDDP-TNA) 上的包封效率。本研究中使用的锐钛矿 TNA 纳米系统具有 25 θ 和 48 θ 的衍射角。使用主要功能标记酰胺 I 带 (N-H) 确定了 CDDP 在 TNA 上的分布和结合相互作用,并进一步捕获了 CDDP 从 TNA 中的缓释曲线。此外,CDDP-TNA 纳米系统具有良好的亲水性,可以促进 CDDP 从 TNA 纳米系统中有效释放。然而,需要使用聚合物涂层技术开发 CDDP-TNA 纳米系统的控释模型来支持目前的发现,特别是在靶向癌症治疗应用中。
由于高性能商用现货 (COTS) 计算平台的技术进步,空间计算正在蓬勃发展。太空环境复杂且具有挑战性,具有尺寸、重量、功率和时间限制、通信限制和辐射效应。本论文提出的研究旨在研究和支持在空间系统中使用 COTS 异构计算平台进行智能机载数据处理。我们研究在同一芯片上至少有一个中央处理器 (CPU) 和一个图形处理单元 (GPU) 的平台。本论文提出的研究的主要目标有两个。首先,研究异构计算平台,提出一种解决方案来应对空间系统中的上述挑战。其次,使用新颖的调度技术补充所提出的解决方案,用于在恶劣环境(如太空)中在 COTS 异构平台上运行的实时应用程序。所提出的解决方案基于考虑使用并行任务段的替代执行的系统模型。虽然将并行段卸载到并行计算单元(如 GPU)可以改善大多数应用程序的最佳执行时间,但由于过度使用 GPU,它可能会延长某些应用程序中任务的响应时间。因此,使用所提出的任务模型是减少任务响应时间和提高系统可调度性的关键。基于服务器的调度技术通过保证 CPU 上并行段的执行时隙来支持所提出的任务模型。我们的实验评估表明,与应用程序的静态分配相比,所提出的分配可以将实时系统的可调度任务集数量增加高达 90%。我们还提出了一种使用基于服务器的调度和所提出的任务模型的动态分配方法,该方法可以将可调度性提高高达 16%。最后,本文提出了一个模拟工具,支持设计人员使用所提出的任务模型选择异构处理单元,同时考虑处理单元的不同辐射耐受性水平。
2。Lorch JH等。 在放射胺难治性区分甲状腺癌(RAIR DTC)中,Nivolumab(n)加iimimumab(i)的II期研究与构成(ATC)和髓质甲状腺癌(MTC)中的甲状腺DTC(RAIR DTC)。 临床肿瘤学杂志38,第1期。 15_suppl(5月20日,2020年5月20日)6513 - 6513。 3。 Haugen B等。 lenvatinib加上放射性碘 - 弗拉克(Rair),进行性分化甲状腺癌(DTC)的患者的pembrolizumab联合疗法:多中心II期国际甲状腺甲状腺肿瘤学小组试验的结果。 临床肿瘤学杂志38,第1期。 15_suppl(5月20日,2020年5月20日)6512 - 6512。 4。 Schlumberger M等。 lenvatinib与放射性碘 - 抗毒性甲状腺癌中的安慰剂。 n Engl J Med 2015; 372:621 - 30。 5。 Subbiah V等。 dabrafenib和Trametinib治疗局部晚期或转移性BRAF V600突变剂甲状腺癌的患者。 临床肿瘤学杂志2018; 36:7 - 13。 6。 Capdevila J等。 PD-1阻滞性甲状腺癌中的阻滞。 临床肿瘤学杂志38,第1期。 23(2020年8月10日)2620 - 2627。 7。 Cabanillas Me等。 atezolizumab与靶向甲状腺甲状腺癌(ATC)的靶向疗法组合。 临床肿瘤学杂志2020; 38(15)。 8。 iyer PC等。 抢救pembrolizumab添加到激酶抑制剂疗法中,用于治疗甲状腺肿瘤癌的治疗。 J免疫癌症2018; 6:68。Lorch JH等。在放射胺难治性区分甲状腺癌(RAIR DTC)中,Nivolumab(n)加iimimumab(i)的II期研究与构成(ATC)和髓质甲状腺癌(MTC)中的甲状腺DTC(RAIR DTC)。临床肿瘤学杂志38,第1期。15_suppl(5月20日,2020年5月20日)6513 - 6513。3。Haugen B等。 lenvatinib加上放射性碘 - 弗拉克(Rair),进行性分化甲状腺癌(DTC)的患者的pembrolizumab联合疗法:多中心II期国际甲状腺甲状腺肿瘤学小组试验的结果。 临床肿瘤学杂志38,第1期。 15_suppl(5月20日,2020年5月20日)6512 - 6512。 4。 Schlumberger M等。 lenvatinib与放射性碘 - 抗毒性甲状腺癌中的安慰剂。 n Engl J Med 2015; 372:621 - 30。 5。 Subbiah V等。 dabrafenib和Trametinib治疗局部晚期或转移性BRAF V600突变剂甲状腺癌的患者。 临床肿瘤学杂志2018; 36:7 - 13。 6。 Capdevila J等。 PD-1阻滞性甲状腺癌中的阻滞。 临床肿瘤学杂志38,第1期。 23(2020年8月10日)2620 - 2627。 7。 Cabanillas Me等。 atezolizumab与靶向甲状腺甲状腺癌(ATC)的靶向疗法组合。 临床肿瘤学杂志2020; 38(15)。 8。 iyer PC等。 抢救pembrolizumab添加到激酶抑制剂疗法中,用于治疗甲状腺肿瘤癌的治疗。 J免疫癌症2018; 6:68。Haugen B等。lenvatinib加上放射性碘 - 弗拉克(Rair),进行性分化甲状腺癌(DTC)的患者的pembrolizumab联合疗法:多中心II期国际甲状腺甲状腺肿瘤学小组试验的结果。临床肿瘤学杂志38,第1期。15_suppl(5月20日,2020年5月20日)6512 - 6512。4。Schlumberger M等。lenvatinib与放射性碘 - 抗毒性甲状腺癌中的安慰剂。n Engl J Med 2015; 372:621 - 30。5。Subbiah V等。dabrafenib和Trametinib治疗局部晚期或转移性BRAF V600突变剂甲状腺癌的患者。临床肿瘤学杂志2018; 36:7 - 13。6。Capdevila J等。PD-1阻滞性甲状腺癌中的阻滞。临床肿瘤学杂志38,第1期。23(2020年8月10日)2620 - 2627。7。Cabanillas Me等。atezolizumab与靶向甲状腺甲状腺癌(ATC)的靶向疗法组合。临床肿瘤学杂志2020; 38(15)。8。iyer PC等。抢救pembrolizumab添加到激酶抑制剂疗法中,用于治疗甲状腺肿瘤癌的治疗。J免疫癌症2018; 6:68。J免疫癌症2018; 6:68。
该探索性项目的第一阶段涉及研究 WSN 领域的现有工作和工业需求。通过文献综述、研讨会出席和对主要合作者的访问,确定了许多重要的测量问题。这些问题包括无线电链路质量、网络、传感器、机载处理和高级处理。研究还发现,采用这些技术存在两个主要障碍。首先,对于许多潜在用户来说,建立任何网络都需要软件和电气工程方面的专业知识,这已被证明是极其昂贵和耗时的,这表明该技术在许多方面仍处于起步阶段。其次,这种系统的输出通常尚未完全理解。需要更充分地描述 WSN 测量的准确性和可靠性,以便进行成本效益或风险分析。