癌症干细胞(CSC)与肿瘤的启动,美味和耐药性有关,并被认为是癌症治疗的有吸引力的靶标。在这里,我们鉴定了由AXL受体,PYK2和PKCα介导的临床相关的Nexus,并显示了其对TNBC中干性的影响。AXL,PYK2和PKCα表达与基础类乳腺癌患者的干性特征相关,并且在多个间充质TNBC细胞系中它们的耗竭显着减少了乳球形成细胞的数量和具有CSCS特征性标记的细胞的数量。敲低PYK2可降低AXL,PKCα,FRA1和PYK2蛋白的水平,并在PKCα耗竭后获得了类似的趋势。 pyk2 depletion通过FRA1和TAZ介导的反馈回路降低了AXL转录,而PKCα抑制作用诱导AXL将AXL重新分布为内体/溶酶体隔室并增强其降解。 pyk2和pkcα在多个诱导型AXL水平的多个诱导途径的途径上进行合作,并同时使用STAT3,TAZ,FRA1和SMAD3的水平/激活以及多能转录因子NANOG和OCT4。 TNBC敏感性细胞对PYK2和PKCα抑制的诱导,这表明靶向AXL-PYK2-PKCα回路可能是消除TNBC中CSC的有效策略。敲低PYK2可降低AXL,PKCα,FRA1和PYK2蛋白的水平,并在PKCα耗竭后获得了类似的趋势。pyk2 depletion通过FRA1和TAZ介导的反馈回路降低了AXL转录,而PKCα抑制作用诱导AXL将AXL重新分布为内体/溶酶体隔室并增强其降解。pyk2和pkcα在多个诱导型AXL水平的多个诱导途径的途径上进行合作,并同时使用STAT3,TAZ,FRA1和SMAD3的水平/激活以及多能转录因子NANOG和OCT4。TNBC敏感性细胞对PYK2和PKCα抑制的诱导,这表明靶向AXL-PYK2-PKCα回路可能是消除TNBC中CSC的有效策略。
・发现在茎尖分生组织中基因组DNA高度甲基化,并且成花素可增加DNA甲基化。 ・明确了茎尖分生组织中的DNA甲基化主要由RNA依赖性DNA甲基化途径(RdDM途径)介导。 ・提出了成花素的新功能,即通过DNA甲基化抑制茎尖分生组织中的转座子转移。 ・成功快速大量地分离了以前难以分析的细茎尖分生组织。
摘要。我们描述了一个贝叶斯控制器的贝叶斯控制器,这是控制理论中众所周知的基准。卡车孔系统的特征是其非线性和不足的性质,我们通过(1)假设控制器缺乏传感器噪声方差的知识,并且(2)在控制信号上施加界限。传统的控制算法通常难以适应不确定性和约束。然而,贝叶斯框架,尤其是专用推理框架,可以顺利地适应这些复杂性。在拟议的控制器中,整个计算过程由在线贝叶斯推理组成。通过工具箱简化了此过程,以在因子图中快速传递基于消息传递的推断。我们描述了在因子图中传递消息的机制,解决了诸如非线性因素,有限控制和实时参数跟踪之类的挑战。本文的主要目的是证明,随着主动推理框架的发展和自动推理工具箱的效率,贝叶斯控制成为应用程序工程师的吸引人选择。
摘要这项研究调查了机器学习技术在检测油棕叶中疾病的应用,并利用来自Tanah Laut地区种植园的1,119张图像的数据集。数据集包含488例患病和631个健康的叶片样品,这些样品经过精心裁剪以隔离叶片区域,并在域专家的帮助下标记。用于特征提取,同时考虑了实验室和RGB颜色空间,以及Haralick纹理特征,每个像素总共有11个功能。采用了尺寸和选择相关特征,应用主成分分析(PCA)和随机森林方法。随后使用支持向量机(SVM)进行叶片健康状况的分类,并使用准确性,精度,召回和F1得分指标评估模型性能,这些均来自混淆矩阵。研究发现,PCA和随机森林显着提高了模型性能,从而提高了区分健康和患病叶片的能力。这些发现为在油棕种植园中开发自动疾病检测系统的发展提供了宝贵的见解,并在精确农业中使用了潜在的应用。此外,结果提出了进一步研究植物疾病诊断的途径,强调了先进的机器学习技术在增强作物管理和支持可持续农业实践中的作用。
一位名叫 HM 的著名患者让海马体的重要性得到了深刻的体现。作为癫痫手术的一部分,医生切除了他大部分的内侧颞叶。自 1953 年那次手术以来,他没有形成任何新的记忆。他能记得童年和手术前的一切,他仍然有工作记忆和形成程序记忆的能力。你可以和他进行正常、清晰的对话,但如果你离开房间片刻,当你回来时,他不会记得你或对话。他完全失去了形成陈述性记忆的能力。
结果:数据库包括73342个条形码,分为来自101个国家 /地区的5310个垃圾箱(物种代理)。哥斯达黎加贡献了所有条形码序列的近一半,而将近50个国家 /地区的条形码少于十个。只有五个国家,哥斯达黎加,加拿大,南非,德国和西班牙,尽管条形码数据库涵盖了大多数主要的分类学和生物地理位置上的谱系,但采样了很高的完整性。pd显示出中度饱和度,因为一个国家添加了更多的物种多样性,并且社区系统发育表明国家动物群的聚类。然而,在物种层面,即使在最激烈的采样国家中,库存仍然不完整,并且对全球物种丰富度模式的评估不足。
马铃薯叶疾病主要有两类;早期疫病和晚疫病疾病。这种疾病在某些天气模式中可能更普遍,并且对马铃薯作物产生灾难性影响。总结,温暖,潮湿的天气,经常降雨或大量露水,15°C至20°C之间的温度以及缺乏阳光的天气条件是可能导致马铃薯晚枯萎病的天气条件。较干燥的天气条件有利于早期疫病,与后期的疫病不同。温暖而干燥的天气,缺乏降雨或灌溉,21°C至29°C之间的温度以及早晨的高湿度是可能导致马铃薯早期枯萎病的天气状况。修改的数据集用于受气候影响的预测,使用随机森林模型的测试精度为97%。对实验结果的分析表明,基于天气数据框架的建议的马铃薯叶疾病预测优于框架的结果。
鳄梨 (Persea americana Mill.)是一种具有经济价值的植物,因为其果实脂肪酸含量高且风味独特。其脂肪酸含量,尤其是相对较高的不饱和脂肪酸含量,具有显著的健康益处。我们在此展示了西印度鳄梨的端粒到端粒无缝基因组组装 (841.6 Mb)。基因组包含 40 629 个预测的蛋白质编码基因。重复序列占基因组的 57.9%。值得注意的是,所有端粒、着丝粒和核仁组织区都包含在此基因组中。通过荧光原位杂交观察到这三个区域的片段。我们鉴定出 376 个潜在的抗病性相关核苷酸结合亮氨酸富集重复基因。这些基因通常聚集在染色体上,可能来自基因重复事件。五个 NLR 基因(Pa11g0262、Pa02g4855、Pa07g3139、Pa07g0383 和 Pa02g3196)在叶、茎和果实中高度表达,表明它们可能参与鳄梨在多种组织中的疾病反应。我们还鉴定出 128 个与脂肪酸生物合成相关的基因,并分析了它们在叶、茎和果实中的表达模式。Pa02g0113 编码 11 种介导 C18 不饱和脂肪酸合成的硬脂酰酰基载体蛋白去饱和酶之一,在叶子中的表达量高于在茎和果实中的表达量。这些发现提供了宝贵的见解,增强了我们对鳄梨脂肪酸生物合成的理解。
在耐断层拓扑回路实现实验中的摘要是将纳米线与最小疾病相互连接。合并形成的平面外依赖二胺(INSB)纳米线网络是潜在的候选者。然而,它们的生长需要一个外来物质茎通常由INP – INA制成。该茎施加了局限性,其中包括限制纳米线网络的大小,通过晶界和杂质掺入引起障碍。在这里,我们省略了INP底物上无茎INSB纳米线网络的生长。为了使生长无茎,我们表明在INSB生长之前,需要使用Arsine(Ash 3)进行预处理。通过用纳米腔的选择性区域掩膜对底物进行构图,可以实现无茎纳米线生长的高收益,其中包含纳米线产生的受限金液滴。有趣的是,这些纳米线是弯曲的,由于合并故障而构成了互连纳米线网络的挑战。我们将这种弯曲归因于INSB纳米线中的砷杂质和插入式晶格不匹配的非均匀掺入。通过调整生长参数,我们可以减轻弯曲,从而产生大型和单晶的INSB纳米线网络和纳米片。这些纳米结构的大小和晶体质量的提高扩大了该技术制造先进量子设备的潜力。