生物多样性的抽象准确的系统分类对于生态和进化研究是基础,尤其是在一个越来越降低和威胁生物多样性的世界中。在本研究中,我们建议使用遗传标记物的探索性分析,以从物种之间作为分子特征(MTS)的序列序列来获取其他信息。这些分子特征又可以为综合分类法提供独立的信息,以帮助属级限制。因此,我们使用叶叶属抗肌emimyrmex Cristiano等,2020年,Atta Fabricius,1804年,1865年的Acromyrmex Mayr作为模型来评估定期在系统生理和进化研究中定期应用的线粒体基因组片段。生物信息学分析揭示了可以用作诊断特征的物种之间共有的结构证据,将其与其他物种区分开,并支持对叶片的三个属的分类。有丝分裂组段的分子特征,以及其他特征,例如染色体数,核型特征,分子系统发育和形态学数据,可用于综合框架中,以访问生物多样性和目的分类学假设。
摘要: - 近年来尿路感染(UTI)已成为一个日益增长的问题。引起尿路感染(UTI)的大多数革兰氏阴性(GN)细菌是大肠杆菌。引起UTI的其他克阳性(GP)细菌包括Klebsiella肺炎,铜绿假单胞菌,Acinetobacter Baumannii,肠杆菌,肠肠杆菌,Proteus mirabilis,citdrobacter,Citdrobacter,Citdrobacter Freunde,Proteus fulunde,proteus ulvaris ulvaris and klebaris and klebaris colgaris colvaris colvaris colvaris cytytipicin。使用了代表革兰氏正和革兰氏阴性的四种微生物。两克阳性细菌是金黄色葡萄球菌和枯草芽孢杆菌,而两克阴性细菌是大肠杆菌和鼠伤寒沙门氏菌。通过琼脂 - 孔扩散法监测植物提取物的抗菌活性。最近,药用植物在治疗包括尿路感染在内的不同种类的感染中发现了很大的普及。初步的植物化学分析表明,生物碱叶叶提取物中的活性生物成分是生物碱,单宁,皂苷,类黄酮作为活性生物成分的存在。
地中海饮食模式,特级初榨橄榄油(EVOO)占据了中心位置,与预期寿命较长和许多非传染性疾病的风险有关,包括心血管,糖尿病,痴呆症和癌症。橄榄油对包括糖尿病2型糖尿病(DMT2)在内的各种疾病的阳性作用通常归因于其脂肪酸含量(例如油酸)。然而,在过去的二十年中,研究人员证实,酚类化合物(例如油蛋白酶)在血糖调节方面也有显着改变。橄榄植物的其他未经处理的部分(水果和叶子)对DMT2患者的血糖变异性显示出积极影响。本评论的重点是有关橄榄油,水果和叶子对DMT2治疗的影响的可用研究结果。具体来说,重点是橄榄油,水果和叶子的多酚和脂肪在其抗糖尿病生物学活动方面。
随着煤炭和石油等化石燃料的过度使用和剥削,当代世界文明已经面临着越来越多的重要能源问题和环境退化。1,2因此,世界上大多数国家都制定了双碳政策,这些政策使得创造和利用绿色,可再生资源以解决上述问题,以解决维持迅速的经济发展。3最近对环境废物产生活化的多孔碳及其对各种应用的使用的研究引起了很多科学的关注。4同时,创建具有大规模应用的新碳材料必须遵守工业需求,例如环境可持续性,一种不充分的或简单的生产方法,以及披露增强甚至新颖的期望功能。5,6除了它们的优质化学和热稳定性外,这些激活或多孔碳的高表面积,可变孔隙率以及孔径尤其引起了人们的兴趣。7这些条件是
摘要:药用植物在世界许多地方的制药行业中以多种方式用于获取药物。它们传统上尤其在发展中国家使用,在那里它们提供具有成本效益的治疗方法。然而,准确识别药用植物可能具有挑战性。本研究使用深度神经网络和知识提炼方法,该方法基于 8 种基于叶子的埃塞俄比亚药用植物的 4,026 张图像数据集。来自 ResNet50 教师模型的知识被应用于轻量级 2 层学生模型。针对效率进行优化的学生模型实现了 96.91% 的准确率,并且接近教师模型在未见测试数据上的 98.98% 的准确率。训练建立在优化策略之上,包括过采样、数据增强和学习率调整。为了理解模型的决策,我们使用了 LIME(局部可解释模型无关解释)和 Grad-CAM(梯度加权类激活映射)事后解释技术来突出显示对分类有贡献的有影响的图像区域。
叶锈病是由Triticina Eriksson(PT)引起的,是小麦最严重的叶面疾病之一。抗叶生锈的育种是控制这种毁灭性疾病的实用且可持续的方法。在这里,我们报告了LR47的鉴定,LR47是一种从aegilops speltoides渗入小麦的广泛有效的叶子抗锈蚀基因。LR47编码均匀的亮叶核苷酸核苷酸结合重复蛋白,既具有必要又具有足够的能力来赋予PT耐药性,如功能丧失突变和转基因互补所证明。LR47渗透线,没有或减少了连接阻力,并开发了LR47的诊断分子标记。LR47蛋白的盘绕螺旋结构域无法诱导细胞死亡,也没有自蛋白相互作用。LR47的克隆扩大了可以掺入多基因转基因盒中以控制这种毁灭性疾病的叶片锈基基因的数量。
文章信息摘要文章类型:研究简介:传统上在喀麦隆中使用了Ficus Vallis-Choudae来管理与碳水化合物代谢有关的疾病。这项研究旨在评估其体内(AEFVC)水提取物的胰岛素敏感性及其对体外α-淀粉酶和α-葡萄糖苷酶在体外的抑制作用。方法:进行AEFVC的植物化学分析以识别其成分化合物。酶促测定以评估α-淀粉酶和α-葡萄糖苷酶抑制。抗氧化活性,包括DPPH自由基清除和减铁能力。由高脂饮食和链霉菌素(35 mg/kg)诱导的2型糖尿病的雄性Wistar大鼠用AEFVC以110、220或440 mg/kg的剂量处理28天。参数,例如体重,血糖,脂质谱和氧化应激标记。结果:植物化学分析表明,AEFVC包含不同浓度的多种化合物,包括总酚类,单宁,皂苷和类黄酮。提取物显示出对α-淀粉酶和α-葡萄糖苷酶的剂量依赖性抑制作用,蔗糖和淀粉耐受性测试的餐后葡萄糖水平显着降低,以440 mg/kg的形式降低。AEFVC表现出有效的抗氧化活性,其DPPH自由基清除和还原性的特性证明了抗氧化活性(P <0.05)。此外,提取物可显着改善血清脂质谱,降低总胆固醇,甘油三酸酯,LDL胆固醇和丙二醛,同时增加HDL胆固醇,谷胱甘肽和过催化酶水平(p <0.05)。结论:AEFVC表现出降血糖,抗氧化剂和胰岛素敏化作用,可能是通过抑制α-葡萄糖苷酶和α-淀粉酶介导的。这些发现表明,AEFVC在管理2型糖尿病和相关代谢疾病方面可能具有治疗潜力。
摘要:交叉是密集波长多路复用(DWDM)应用程序中的关键设备之一。在这项研究中,设计,制造和表征了具有不对称的马赫德干涉仪结构的交叉裂料,并在杂化硅和尼贝特薄膜(SI-LNOI)中进行了表征。可以通过SI光子的成熟加工技术来制造基于Si-Lnoi的交叉研究,并且它可以使用LN的E-O效应来实现电光(E-O)调谐功能。在1530–1620 nm的范围内,交叉裂料达到了55 GHz的通道间距,灭绝比为12-28 dB。由于Si的巨大折射率,基于Si-Lnoi的Si加载带状波导具有紧凑的光学模式区域,这允许一个小的电极间隙提高对手杆的E-O调制效率。对于1 mm的E-O相互作用长度,E-O调制效率为26 pm/v。Interleaver将在DWDM系统,光学开关和过滤器中具有潜在的应用。
摘要:菊花莫里氏菌是一种有价值的植物,含有各种植物化学化合物,并展示了各种生物学活性。使用2,2-二苯基-1-苯基氢化唑和2,2'-氮杂性(3-乙基苯甲酸苯胺-6-磺酸)的含量分析,使用2,2-二苯基1-苯二羟基羟基苯基和2,2' - 氮杂型,使用12二苯基-6-硫代硫酸化的测定量,使用量子量的量子量,使用量子上的含量分析,对17种不同品种的17种不同品种的羊皮菌的叶子和花朵提取物进行了抗氧化活性。二极管阵列检测。我们发现,与其他品种相比,“福特”和“ Raina”品种表现出强大的抗氧化能力和高酚类化合物含量,而“ cielo”的花朵和“白帽”的花朵在这两个测定中均表现出低抗氧化能力。“ Cielo”品种也显示出最低的化合物含量。此外,在大多数样品中,3,5-二甲基二酸酯和4,5-二甲基烯酸酸在提取物中脱颖而出。这项研究提供了基本知识,可用于选择适当的C. morifolium品种以进行进一步研究。此外,可以应用“福特”和“ Raina”品种,其中包含大量的生物活性化合物并表现出优异的抗氧化能力,可用于生产健康脱皮产品。
土壤的微生物群落通过养分循环与土壤的生育有很密切的联系(Bradford等,2016; Luo等,2016; Iwaoka等,2018; Ochoa-Hueso等,2018,2018年),并为了解与Microbial Commusity Comporties and Sover and Sorie and and Sover(Bastire)的努力(b。 Al。,2017年; Delgado-Baquerizo等人,2018b)。几项研究表明,双向植物和微生物反馈,表明植物通过土壤温度,水分,物理结构,垃圾质量和根部渗出液的变化来塑造土壤微生物群落的多样性和组成(Hartmann等,2009; Haichar et al。,2014; Hortal等,2014; Hortal等,2017)。反过来,土壤微生物群落通过改变影响生态系统功能的植物性能和功能性状(即营养周期和生产力)来影响植物群落的结构(Bardgett等,2014; Lozano等,2017)。然而,除了微生物环境外,植物 - 微生物的关系可能会影响土壤微生物群落的组成和多样性(Burns等,2015; Prober等,2015;šTursova;ŠTursovaet al。,2016; 2016; 2016; van Nuland et al。生态系统(John等,2007; McCarthy-Neumann和Kobe,2010; Liu等,2012; Waring,2013)。哥斯达黎加拥有地球上最生物多样性的地区,但有关土壤和叶子垃圾微生物组的多样性和组成的信息很少。对于与商业和非商业野生香草物种相关的叶窝和土壤的微生物生态学显而易见的信息差距。近年来,一些研究专注于哥斯达黎加的土壤微生物群落,其中大多数以真菌群落的特征为中心(Nemergut等,2010; Leff et al。,2012; Kivlin and Hawkes,2016; Kivlin and Hawkes,2016; Schilling等,2016; Schilling et al。,2016; Waring et al。 McGee等,2018)。香草属的重要性主要在于其商业物种V. Planifolia,V。Tahitensis和V. Pompona,它们是食品和香水工业使用的Vanillyl化合物的天然提供者(Korthou and Verpoorte,2007; Ranadive,2011; Ranadive,2011; Maruenda et e al an al an al an al''。在哥斯达黎加中,香草的遗传库占全球多样性的10%以上(Azofeifa-Bolaños等,2017; Karremans和Lehmann 2018)。尽管普莱里亚里亚(V. planifolia)的经济重要性很少,但对香草作物野生亲戚的关注很少,其特征是小,分散和遗传上不同的人群,其自然栖息地中种子生存能力较低且具有复杂的特殊关系(Alomia等人,2017年; Azofeifa-Bololaunños等人,2018年)。表征本地森林土壤和叶子微生物群落是保存香草属的重要第一步。濒临灭绝的遗传资源以及在现场和原位生产系统中的作物管理策略的改善(Watteyn等,2020)。