本文对中空轴断裂进行了分析。本文报道了一起双引擎教练机事故的调查。事故发生的原因为右发电机失灵和油压过低。根据警告和后续事故,确定了主要故障。故障涉及 J85 涡喷发动机附件驱动齿轮箱 (ADG) 和输入驱动组件 (IDA) 上的中空轴的疲劳断裂。确定断裂是由扭转载荷作用于连接 ADG 和 IDA 的中空轴引起的。由于载荷超过了制造商作为系统保护部件设计的极限值,中空轴断裂。虽然成功确定了主要故障,但对断裂的触发原因进行了进一步分析。通过详细的断口和金相研究,确定了断裂的根本原因是作为驱动单元的 ADG 和作为驱动单元的 IDA 之间的中空轴未对准。
摘要:我们从手性扰动理论中得出了一种新型的BPS,该理论最少耦合到有限同胞化学潜力的电动力学。在iSospin化学电位的临界值下,量规场的三个一阶差分方程(意味着二阶方程)的系统,可以从饱和界限的要求中得出。这些BPS构型代表具有超导电流支持的量化通量的磁多涡度。相应的拓扑电荷密度与磁通量密度有关,但通过耐药轮廓筛选。这种筛选效果允许这些BPS磁涡流产生的磁场的最大值,为B最大= 2,04×10 14 g。详细讨论了单个BPS涡流的解决方案,并描述了与Ginzburg-Landau理论中临界耦合中Ginzburg-Landau理论中的磁性涡流的比较。
我们研究了在 p-Pb 碰撞中由于初始涡量和电磁场的影响而产生的小系统中重夸克的定向流。我们使用相对论传输代码来模拟小系统的体积演化,并使用朗之万动力学研究重夸克动量演化。对于重夸克与体积的相互作用,我们采用了准粒子模型 (QPM)。我们观察到由于电磁场而产生的粲夸克的定向流分裂 (v 1) 较大,这与核-核碰撞中粲夸克的定向流分裂相当。然而,在 p 核碰撞中,由于初始倾斜物质分布而导致的定向流的幅度并不大。由于碰撞系统的不对称性,观察到的定向流并不快度奇数。本文中提出的结果提供了一种独立的方法来量化产生的初始电磁场和小系统中的物质分布。
为涵盖可能的性能范围,我们开发了三种发动机模型:最有可能(衍生涡扇发动机)、最佳情况(全新涡扇发动机)和最坏情况(衍生涡喷发动机)。对于最有可能的情况,我们研究了基于 CFM56 的预计可用于 Aerion AS2 的发动机 (Fehrm, 2018)。在预期的 1.4 马赫飞行条件下,发动机的低压压缩机 (LPC) 压力比为 2,高压压缩机 (HPC) 压力比为 10,涡轮入口温度 (T4) 为 1650 K。为了使其适应 2.2 马赫的飞行,我们假设压力比受压缩机出口温度的限制,这是压缩机中材料温度限制的结果 (Fehrm, 2016)。这为我们提供了大约 7.5 的 HPC 压缩比。我们还假设涵道比为 3,与 Boom 所述的发动机计划一致。考虑到 2.2 马赫操作时产生的高冲压阻力,这可能是乐观的。
我们研究了 p-Pb 碰撞中由于初始涡量和电磁场的影响而产生的小系统中重夸克的定向流。我们使用相对论传输代码来模拟小系统的体积演化,并使用朗之万动力学研究重夸克动量演化。对于重夸克与体积的相互作用,我们采用了准粒子模型 (QPM)。我们观察到由于电磁场而产生的粲夸克的定向流分裂 (∆ v 1 ),这与核-核碰撞中粲夸克的定向流分裂相当。然而,由于 p 核碰撞中初始倾斜物质分布导致的定向流的幅度并不大。由于碰撞系统的不对称性,观察到的定向流并不快度奇数。本文中提出的结果提供了一种独立的方法来量化产生的初始电磁场和小系统中的物质分布。
运行完成后,收集每个案例的数据并进行如下后处理。首先,将每次运行的 1000 秒时间域数据分成几段(参见图 3)。每次运行的前 200 秒被丢弃,因为尾流未完全形成。最后 100 秒也被丢弃,因为系统问题导致一些文件不完整。最后,将剩余的时间历史分为 200 到 600 秒的一段,其中下游涡轮机未运行 IPC,以及 700 到 900 秒的一段,此时它正在运行 IPC,并且 IPC 启动瞬变已经消失。虽然应该可以平稳启动 IPC,但过渡不是我们的研究重点,所以我们启动控制器时相当突然。在基线情况下,IPC 从未启用,以提供比较的基础。从尾流发展时间和尾流中的速度可以看出,平均涡轮到涡轮的流通时间为
进行了风洞试验,以表征 RAE 2822 超临界翼型并实施主动流动控制技术。试验在各种亚音速和跨音速马赫数和攻角下进行。沿四分之一弦轴连接到翼型端部的两个称重传感器用于量化作用在翼型上的气动力。跨音速翼型已集成,控制技术已在佛罗里达州立大学 Polysonic 风洞中成功实施。本文介绍了一些初步实验结果,并描述了实施过程中获得的经验教训。油流可视化显示翼型吸力面上存在角涡,下表面存在楔形图案,这表明局部过渡流和湍流区域的组合,没有冲击或冲击非常弱。基准翼型上测量的升力系数远低于基于文献的估计值。这些结果表明,测试的翼型需要修改其纵横比和横截面积以适应设施。基于同流喷射的主动流动控制技术在改善气动性能方面显示出良好的前景。
我们系统地研究了流体动力学模拟中超子全局极化对碰撞系统初始纵向流速的敏感性。通过在将初始碰撞几何映射到宏观流体动力学场时明确施加局部能量动量守恒,我们研究了系统的轨道角动量 (OAM) 和流体涡度的演变。我们发现同时描述 Λ 超子的全局极化和介子定向流的斜率可以强烈限制流体动力学演化开始时纵向流的大小。我们利用 RHIC 光束能量扫描程序中的 STAR 测量结果提取了初始纵向流的大小和产生的 QGP 流体中轨道角动量分数作为碰撞能量的函数。我们发现在流体动力学演化开始时,中快速度流体中剩余约 100-200 ℏ OAM。我们进一步考察了不同的流体动力学梯度对Λ和¯ Λ自旋极化的影响。µ B /T的梯度可以改变Λ和¯ Λ极化之间的有序性。
5-在多孔板中,渴望细胞介质,并在对照孔中添加100 µL对照Spachip®稀释(见图2)。使用前,涡流在使用前。添加100 µL AssaySpachip®含有孔的新鲜培养基。通过经常上下移动来使溶液匀浆。6-在细胞孵化器中孵育过夜,使细胞内化Spachip®。内在化率可能取决于细胞亚型,但应超过25%。7-要包括参考值,请使用板的一些井来校准系统(对照,离子载体和/或诸如BR-A23187之类的钙隔离剂或图2中的BAPTA-AM)。在这种情况下,请按照校准制造商的说明进行操作。8-使用您的读出平台执行实验。对于长期多次测量测定法(例如,在一个星期或一个月内进行监视),将板保持在每个测量之间的适当条件,并根据细胞亚型每24-48小时更改一次培养基。