摘要 涡轮发动机转子叶片非包容性失效可能造成的危害一直是各航空发动机制造商长期关注的问题,而在临界工况下对失效叶片进行全面包容也是满足转子完整性要求的重要考虑之一。通常,在发动机设计阶段需要评审涉及发动机包容能力的因素有很多,例如机匣厚度、转子支撑结构、叶片重量和形状等。然而,证明发动机包容能力的首要方法是风扇叶片脱落试验和安全裕度(MS)分析。本文基于具体的发动机模型,旨在讲解FAR Part 33中航空发动机包容性要求的要点,并介绍MS分析和风扇叶片脱落试验在发动机适航认证中的实施。通过介绍,将对业界评估发动机包容能力和准备发动机认证程序中的最终试验演示有很大帮助。 ª 2013 CSAA & BUAA.由 Elsevier Ltd. 制作和托管。
摘要:- 叶片跟踪是确定螺旋桨叶片尖端相对于彼此的位置的过程(叶片在同一旋转平面上旋转)。跟踪仅显示叶片的相对位置,而不是它们的实际路径。所有叶片应尽可能紧密地跟踪彼此。在航空学中,螺旋桨(也称为螺旋桨)将发动机或其他动力源的旋转运动转换为旋转的滑流,从而推动螺旋桨向前或向后。它包括一个旋转的动力驱动轮毂,轮毂上连接着几个径向翼型叶片,使得整个组件绕纵轴旋转。叶片螺距可以是固定的,手动可变到几个设定位置,或自动可变的“恒速”类型。关键词:- 叶片理论、螺旋桨、Cirrus SR-22
高次谐波桨距长期以来一直是减少振动转子载荷和由此产生的机身振动的一种有吸引力但尚未开发的方法。这个概念很简单。大多数直升机振动源于转子叶片在绕方位旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向的方向不断变化以及转子下方的不规则涡流尾流造成的,由此产生的叶片攻角随方位的变化包含转子轴速度的每个谐波,但只有某些谐波会导致振动载荷传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处结合时完全相互抵消。高次谐波叶片螺距,叠加在传统的零次谐波和每转一次的叶片螺距控制上,是一种选择性控制攻角谐波的方法~>。•会产生振动,
摘要 混合增材制造 (Hybrid-AM) 描述了多操作或多功能的增材制造系统。在工业中,混合增材制造的应用趋势日益增长,这带来了改进制造新零件或混合零件的新方法的挑战。混合增材制造无需任何组装操作即可生产功能齐全的组件。在本研究中,混合增材制造系统意味着要设计一个物体,该物体部分由预制或现成的零件制成,并通过电弧增材制造 (WAAM) 工艺添加。为此,设计并构建了一个使用脉冲 TIG-Wire-Arc 技术的混合增材制造原型系统。构建的成型金属沉积 (SMD) 系统在 x、y 和 z 轴上有三个驱动器和一个额外的旋转驱动器(第四轴)。使用混合增材制造机器,可以将线状材料沉积在现有的原始轮廓上,即棒、管、轮廓或任何 3D 表面上,从而缩短生产时间。通过这种方式,可以将螺旋形特征或扭曲的叶片形状添加到圆柱形零件上。在本研究中,使用开发的混合 AM 原型机将不锈钢螺旋桨叶片沉积在管道上。使用非平面刀具路径沉积后续层,并使用 4 轴 CNC 加工完成螺旋桨叶片的表面。
本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要:CRISPR-Cas 基因编辑技术提供了精确修改作物的潜力;然而,由于组织培养过程冗长且基因型特异性,体外植物转化和再生技术存在瓶颈。理想情况下,植物体内转化可以绕过组织培养,直接产生转化植物,但有效的植物体内传递和转化仍然是一个挑战。本研究探讨了有可能直接改变生殖系细胞的转化方法,从而消除了体外植物再生的挑战。最近的研究表明,装载质粒 DNA 的碳纳米管 (CNT) 可以扩散穿过植物细胞壁,促进外来遗传元件在植物组织中的瞬时表达。为了测试这种方法是否是植物体内转化的可行技术,利用带有报告基因的叶片和离体胚浸润,将 CNT 介导的质粒 DNA 传递到水稻组织中。定量和定性数据表明,CNT 有助于质粒 DNA 在水稻叶片和胚胎组织中的传递,从而导致 GFP、YFP 和 GUS 的瞬时表达。还利用靶向八氢番茄红素去饱和酶 (PDS) 基因的 CRISPR-Cas 载体开展实验,将 CNT 传递到成熟胚胎中,以创建可遗传的基因编辑。总体而言,结果表明,基于 CNT 的质粒 DNA 传递似乎有望用于植物体内转化,进一步优化可以实现高通量基因编辑,从而加速功能基因组学和作物改良活动。
有限元分析(FEA)通常用于模拟在各种操作条件下涡轮叶片的结构行为,有助于改善材料的选择和设计。计算流体动力学(CFD)对于研究涡轮叶片上蒸汽流动的空气动力学很重要,从而使设计人员可以改善叶片曲线以获得最佳的能量转换。基于计算机模型的3D打印技术可实现涡轮叶片的快速原型制作,并可以进行迭代设计改进。计算器有助于预测水分和污染物等环境因素对涡轮叶片性能和耐用性的影响。共同通过提供洞察力,优化性能和加速创新过程,彻底改变了蒸汽涡轮叶片开发的整个生命周期。
为了加速优良苹果品种的早期发育,建立加速从幼苗期向成年期过渡的技术至关重要。阐明这一阶段转变背后的生理机制将有助于开发确保早期阶段转变的苹果幼苗生长系统。在此,在受控条件下对无融合生殖海棠 Malus hupehensis (Pamp.) Rehd. 进行水培栽培,以探索其在阶段转变过程中的植物激素动态。在 57 株幼苗中,有 15 株在发芽后约 10 个月内开花。开花率为 26.3%。开花幼苗的平均高度和平均茎周长分别比未开花幼苗高 27 厘米和 0.56 厘米。开花幼苗主茎顶端成熟叶片中脱落酸浓度在 70 节时高于未开花幼苗,到 90 节时降至未开花幼苗以下。开花幼苗与未开花幼苗主茎顶端成熟叶片中 GA 4 和细胞分裂素浓度无显著差异。这些结果表明,在受控环境下采用水培有利于促进湖北地黄的早期阶段转变。此外,维持主茎顶端成熟叶片中较低的脱落酸浓度水平可促进湖北地黄的阶段转变。
