摘要:创建转基因微生物的“无标记”策略避免了潜在的抗生素抗性基因向其他微生物传播的问题。已经建立的策略,用于设计绿色Microalga衣原体的叶绿体基因组(= plastome)Reinhardtii,涉及使用在钥匙光合作用基因中携带质体突变的受体菌株恢复光合作用功能。在最小培养基上进行转化菌落的选择,使得只有在转基因DNA上进行的野生型拷贝代替突变基因的细胞才能具有光营养的生长。然而,由于使用有限的光敏性表型的突变株,这种方法可能会遭受效率问题,而在最小培养基上的生长缓慢以及未转换的细胞草坪的缓慢倒退。此外,这种光营养的救援往往依靠现有的突变体,这些突变体不一定是转化和靶向转基因插入的理想的:携带点突变的突变体可以轻易恢复,而那些没有删除的突变体不扩展到预期的转基因插入部位,这会引起缺乏过境的救援线的群体,从而引起了缺乏过境的线索。为了改善和加速C. renhardtii的转换管道,我们创建了一个新颖的受体线Hnt6,该系列在PSAA的外显子3中携带了工程删除,该删除编码了光学系统I(PSI)的核心亚基之一。我们使用荧光素酶报道器演示了HNT6的应用。这种PSI突变体是高度光敏的,可以通过在含乙酸乙酸酯的培养基上选择轻耐性,而不是在最小培养基上的光营养生长来更快地恢复转化菌落。缺失延伸到PSAA-3上游的位点,该位点是用于转基因插入的中性基因座,从而确保所有回收的菌落都是包含转基因的转化体。
1 Monash Biomedicine Discovery Institute,Monash University,Clayton,Victoria3800。2澳大利亚克莱顿市莫纳什大学生物化学与分子生物学系,澳大利亚3800。3莫纳什制药科学研究所,莫纳什大学,帕克维尔,维多利亚州3052,澳大利亚。4美国普渡大学的化学和分子药理学系,西拉斐特,美国47907,美国5号沃尔特和伊丽莎·霍尔医学研究所,澳大利亚维多利亚州帕克维尔3052,帕克维尔。6澳大利亚维多利亚州墨尔本大学医学生物学系,澳大利亚3052。6澳大利亚维多利亚州墨尔本大学医学生物学系,澳大利亚3052。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecommons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
心肺旁路(CPB)是开放心脏手术期间必要的生命支持。由CPB引起的全身性炎症反应综合征(SIRS)众所周知,可以增加术后发病率和死亡率(1,2)。急性呼吸窘迫综合征(ARDS)和急性肺损伤(ALI),其特征是与SIR相关的肺水肿,在CPB和CPB之后也被诱导,显着促进了术后的发病率和死亡率(3-6)。炎症反应的成分包括补体的激活,白细胞上粘附分子的表面表达增加以及在系统性循环中存在促炎细胞因子的存在(7-12)。中性粒细胞是白细胞的主要部分,通过产生超氧化物自由基和化学介质的释放在SIR中起重要作用(12,13)。已经证明,激活的中性粒细胞是CPB引起的肺功能障碍的最重要的启动事件之一(14)。sivelestat是一种合成的,特定的,低分子量的中性粒细胞弹性酶抑制剂(15)。已显示它可以降低中性粒细胞弹性酶水平和白介素6的产生,并在体外循环期间保留中性粒细胞的可变形性(6、16、17)。几项临床研究表明,西维勒斯塔(Sivelestat)对接受CPB进行心血管手术的患者的好处(6,12)。但是,这些研究仅评估了计划的心脏手术。 与预定的心脏手术相比,紧急心血管手术通常具有更严重的ALI(15,18)。但是,这些研究仅评估了计划的心脏手术。与预定的心脏手术相比,紧急心血管手术通常具有更严重的ALI(15,18)。该药物可能会阻止SIRS的不良反应,并且可能是减轻接受紧急心血管手术的患者ALI的最佳疗法之一。因此,我们设计了这项研究,以评估Sivelestat对急诊心血管手术后ALI患者肺部保护的影响。
摘要:东方山羊豆是豆科植物,具有重要的生态和经济价值,因其抗逆性强、蛋白质含量高而被广泛栽培。然而,东方山羊豆的基因组信息尚未见报道,限制了其进化分析。由于基因组较小,叶绿体相对容易获得基因组序列以进行系统发育研究和分子标记开发。本文对东方山羊豆叶绿体基因组进行了测序和注释。结果表明,东方山羊豆叶绿体基因组长度为125,280 bp,GC含量为34.11%。共鉴定出107个基因,包括74个蛋白质编码基因,29个tRNA和4个rRNA。东方山羊豆叶绿体基因组中丢失了一个反向重复(IR)区。此外,与其近缘种G. officinalis的叶绿体基因组相比,有5个基因( rpl22 、 ycf2 、 rps16 、 trnE-UUC 和 pbf1 )丢失。共检测到84个长重复序列和68个简单序列重复序列,可作为G. orientalis及其近缘种遗传研究的潜在标记。我们发现,在G. officinalis与其他3个Galegeae物种( Calophaca sinica 、 Caragana jubata 、 Caragana korshinskii )的两两比较中,petL 、 rpl20 和 ycf4 3个基因的Ka/Ks值大于1,表明这3个基因受到了正向选择。 15个Galegeae物种的比较基因组分析表明,大多数保守的非编码序列区域和两个基因区域(ycf1和clpP)分化程度较高,可作为DNA条形码用于快速准确的物种鉴定。基于ycf1和clpP基因构建的系统发育树证实了Galegeae物种间的进化关系。此外,在所分析的15个Galegeae物种中,Galega orientalis在ycf1基因中有一个独特的30 bp内含子,而Tibetan liangshanensis在clpP基因中缺少两个内含子,这与现有只有IR缺失支(IRLC)中的甘草属物种缺少两个内含子的结论相反。总之,首次确定并注释了G. orientalis的完整叶绿体基因组,这可以为Galegeae属内尚未解决的进化关系提供见解。
通过DDCBE介导的碱基编辑产生的植物细胞器基因组突变。a,用于生成叶绿体和线粒体基因组编辑植物的方案图。b,cp-g-t-t∙cp-ddcbe tranfected calli中的转换的效率,具有代表性的sanger测序色谱图。转化后的核苷酸以红色显示在左侧的序列中。箭头指示色谱图中取代的核苷酸。c,DDCBE诱导的基础编辑频率在重生的Calli中。d,选择16S rDNA突变体。红色箭头指示链霉素选择的Calli。e,转染了编码CP-DDCBE的MRNA后引起的C-T转换的频率
背景:植物质体酪蛋白水解蛋白酶(Clp)是质体蛋白酶网络的核心部分,由多个亚基组成。许多Clp在植物尤其是作物中的分子功能尚不明确。结果:本研究鉴定出水稻白化致死突变体al3,该突变体产生白化叶片并在幼苗期死亡。分子克隆表明,AL3编码质体酪蛋白水解蛋白酶OsClpR1,与拟南芥ClpR1同源,靶向叶绿体。与野生型相比,al3突变体中的叶绿体结构发育不良。OsClpR1在水稻所有组织中组成性表达,尤其是在幼叶中。OsClpR1突变影响叶绿素生物合成和叶绿体发育相关基因的转录水平。三个叶绿体基因( rpl2 , ndhB , ndhA )的RNA编辑效率在 al3 中显著降低。利用酵母双杂交筛选发现OsClpR1与OsClpP4,OsClpP5,OsClpP2和OsClpS1发生相互作用。
图 5 在七个 Alnus alnobetula 个体的整个叶绿体侏儒排列中检测到的单核苷酸多态性 (SNP)。随后绘制了参考叶绿体基因组和通过杂交捕获和散弹枪测序方法从核心样本中检索到的 sedaDNA,以评估它们与 SNP 位置相对应的变体。SNP 的位置对应于参考叶绿体基因组。如果 SNP 位于基因内,则在第一行中给出相应的基因名称。如果未从核心样本中检索到任何读数,则不会报告任何变体。颜色代码:Taymyr 特定变异 = 黄色;Omoloy 特定变异 = 橙色;Kolyma 特定变异 = 绿色;Taymyr 地理歧视的潜在标记 = 以红色突出显示的位置;Kolyma 地理歧视的潜在标记 = 以蓝色突出显示的位置;Omoloy 地理歧视的潜在标记 = 以浅绿色突出显示的位置
对沙特阿拉伯濒危药用植物 Blepharis ciliaris 的叶绿体基因组进行了测序和鉴定。采用 NOVOPlasty 技术从全基因组数据中组装出完整的叶绿体基因组。B. ciliaris 的 cp 基因组长度为 149,717 bp,GC 含量为 38.5%,呈环状四分结构;基因组含有一对反向重复序列(IRa 和 IRb 各 25,331bp),由大单拷贝(LSC,87,073 bp)和小单拷贝(SSC,16,998 bp)隔开。基因组中有 131 个基因,其中包括 79 个蛋白质编码基因、30 个 tRNA 和 4 个 rRNA;其中 113 个是特有的,其余 18 个在 IR 区重复。重复分析表明基因组包含所有类型的重复,回文出现的频率更高;分析还确定了总共 91 个简单序列重复 (SSR),其中大多数是单核苷酸 A/T,位于基因间隔区中。本研究报道了 Blepharis 属的第一个 cp 基因组,为研究 B. ciliris 的遗传多样性以及解决核心 Acanthaceae 内的系统发育关系提供了资源。
在茜草科系统发育学中,标记的数量常常是一个限制因素,作者无法提供族和属水平上得到良好支持的树。稳健的系统发育是研究不同分类水平上性状进化模式的先决条件。下一代测序技术的进步彻底改变了生物学,它以较低的成本为越来越多的物种提供了大量数据。由于叶绿体 DNA 序列具有高度保守的结构、通常无重组且大多是单亲遗传,因此长期以来一直被用作植物系统发育重建的选择标记。本研究的主要目的是:1) 通过有效的质体基因组从头组装方法深入了解茜草科 (Ixoroideae) 叶绿体基因组的进化; 2)基于咖啡参考基因组测试挖掘Ixoroideae核基因组中的SNP的效率,以生成支持良好的核树。我们使用下一代序列组装了茜草科Ixoroideae亚科27个物种的整个叶绿体基因组序列。对质体基因组结构的分析表明,基因内容和顺序相对保守。一般而言,在边界区域,分类单元之间的变异较小,但某些分类单元的大单拷贝和短单拷贝连接处均存在倒置重复序列。在咖啡属中确定的SNP平均有79%可转移到Ixoroideae,变异范围为35%至96%。总体而言,质体和核基因组系统发育彼此一致。它们得到很好的解决,并具有很好的支持分支。一般而言,这些族群形成易于识别的进化枝,但 Sherbournieae 族群被证明是多系的。本文结合所用方法和茜草科的叶绿体基因组特征讨论了结果,并与以前的茜草科系统发育进行了比较。