狮头菇 燕窝菇或溅杯菇 鸡油菇 冠尖珊瑚 松茸鞍菇 优雅臭角菇 催吐菌 红菇 小鹿菇或鹿菇 巨型马勃菇 绿鳃蘑菇 靛蓝奶盖菇 南瓜灯菇 恶臭蘑菇 橙色小菇 平菇 圆地星菇 蓬松鬃菇 分鳃菇 斑点牛肝菌 硫磺色鸡油菇 火鸡尾菇 木耳 黄橙色毒蝇伞
从果蝇中的基因组DNA制备该方案可以从40-100 mg的成年蝇(蝇重约1 mg)中分离出高度纯的基因组DNA。首先,在核保持完整的条件下,蝇是在缓冲液中磨碎的,然后使用SDS将DNA从断裂的组织中释放出来。接下来,进行常规的苯酚提取(去除蛋白质)和氯仿提取(去除苯酚),并用乙醇沉淀核酸。离心后(去除脂质和小细胞分子),将核酸沉淀溶解并用rnasea(降解RNA)和蛋白酶K(降解rNASEA和其他蛋白质)串行消化。其他苯酚/氯仿沉淀和乙醇沉淀产生高度纯化的基因组DNA。我们的目标是完整的基因组DNA - 避免通过过度的移液和涡旋剪切DNA。1。将50个成年果蝇放入装有微型植物的1.5 mL微管中,并在500 µl的缓冲液中彻底磨碎A。用500 µl的缓冲液B冲洗杵,将冲洗液加入匀浆中;通过反转微管轻轻混合。在37°C下孵育1小时2。切断P1000微量移动尖端的尖端,然后使用它将匀浆(500 µL)的一半转移到第二个微管中。苯酚通过在每个管,帽和混合物中添加相等的体积(500 µL)Te饱和苯酚来提取样品。离心5分钟。3。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。离心5分钟。4。5。通过在每个管,帽和混合物中添加等体积(500 µl)苯酚的苯酚来重新提取样品。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。氯仿通过在每个管,帽和混合物中添加等体积(500 µl)的氯仿提取样品。离心1分钟。使用截止尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。将NaCl添加到0.1m的最终浓度。乙醇通过在每个微管中添加2卷(〜850 µl)的EtOH来沉淀您的样品;轻轻混合。观察核酸的沉淀。将微管放在-20°C过夜以鼓励沉淀。6。离心10分钟。丢弃上清液;短暂地干燥SpeedVac中的颗粒(将显示使用)。7。如下,将样品组合到单个微管中。然后,使用截止P200尖端将500 µl TE缓冲液加到一个管中
通过研究什么是生物多样性以及为什么我们必须保护它,可以探索淡水和生物多样性主题。您将进行研究以发现河流和湖泊的标志性动物(例如鲑鱼,鳗鱼,鳟鱼,五月蝇,翠鸟,北斗星,苍鹭,水獭)。了解这些动物的生活方式(它们的栖息地要求),它们如何迁移以及为什么它们对我们的环境很重要,将使您深入了解不同物种的相互依存关系。您会发现,生活在河中的无脊椎动物可以告诉您很多有关水质的信息。这是因为有些人对污染非常敏感,并且会因污染而被杀死。您将了解质量评级或“ Q系统” - 一种基于河流中存在的无脊椎动物的方法来确定水质。也引入了基本的公民科学方法论。
b [a] p是由有机物(例如燃料和香烟)的燃烧制成的。它通常在空气污染中发现,并且已知会引起癌症。b [a] p对生物体的微生物群的影响尚不清楚。,我们用7天的饮食饮食治疗了两种B剂量的果蝇(果蝇Melanogaster),并以适当的媒介物和阴性对照处理。然后,我们从果蝇中提取了总DNA,并测序了16S基因的V4区域。我们发现,与雄性相比,B [A] P暴露后,雌性蝇的微生物群变得更加多样化。此外,我们还观察到,在媒介物控制中,Providencia的丰度(一种致病细菌的属)增加,在暴露条件下减少。
理事会致力于创建一个自治市镇,以保护环境,并为我们的居民和游客提供美丽的空间。从现在到2027年,我们将:提供侧重于减少排放和增加生物多样性的气候变化计划。在我们的回收记录上比肯特郡其他任何地方的回收记录建立,并采取了进一步提高费率的措施,同时降低了浪费和蝇息的总体水平。通过解决诸如汽车闲置和出租车排放的污染源的来源,以新开发项目领导的方法支持并鼓励可持续旅行,从而提高自治市镇的环境质量。继续我们成功地管理公园,开放空间和休闲中心,以便每个人都可以使用最好的娱乐设施。认识并支持我们的本地
昆虫识别和保存代金券标本是害虫诊断和监视活动不可或缺的;然而,由于捕获数量高以及样品对环境损害的敏感性,散装昆虫是诊断性的挑战。许多昆虫陷阱捕获依赖于物种鉴定的形态特征的检查,这是一项耗时且高技能的任务,因此需要更有效的分子方法。许多大量的DNA提取方法需要对样品进行破坏性采样,从而导致损坏或完全破坏的代金券标本。我们开发了一种廉价,快速,散装的DNA分离方法,该方法将标本保存为固定的保证金,该标准可以允许攻击后的形态检查和纳入昆虫参考收集中。我们的方案使用了一组暂时的昆虫来验证,这些昆虫耗时以识别大量的果蝇(双翅目:tephritidae:dacinae)。在开发我们的方法时,我们根据以下标准评估了现有方案:对形态的影响;适合大型陷阱捕捞的适用性;成本;易于处理;并应用于下游分子诊断分析,例如实时PCR和metabarcoding。我们发现,快速分离DNA提取的最佳方法是将蝇浸入NaOH:TE缓冲液在75°C中浸入10分钟,而无需蛋白酶K或洗涤剂。这种热索克方法产生了足够的高质量DNA,同时保留了适合物种水平鉴定的形态学特征,样品中最多20,000蝇。裂解物在下游分析中表现良好,例如环路介导的等温扩增(LAMP)和实时PCR应用,而对于元键块PCR,裂解物需要额外的柱纯化步骤。这种方法的开发是提高我们准确检测在散装陷阱中捕获的昆虫的能力所需的关键步骤,无论是生物多样性,生物安全还是有害生物管理目标。
简介:淡水和海洋栖息地是非均质环境,营养浓度在时间和时间之间波动。ixotromophy已被提议作为细菌菌株中细菌菌株的预数据策略,以访问在活微生物中结合的底物。已知的依氧化菌具有丝状,就像蝇纸一样,它们会捕获猎物细胞并将其粘在细胞表面上。猎物细胞的鞭毛已被重新输送在这种捕获行为中发挥作用,其次是猎物细胞裂解。一些ixo-营养性捕食者包含杆状颗粒,称为“ rapidosomes。”这些与收缩注入系统(CISS)共享结构相似性,它们是已知可以介导细菌拮抗作用的大分子注射。
minos是果蝇海德(Drosophila Hydei)的TC 1型型2型转座元件,在克里特郡IMBB的Savakis实验室中发现。我小组的工作表明,MINOS可以在各种无脊椎动物,人培养细胞以及小鼠体细胞和生殖线细胞中转置。minos-主要的农业害虫塞拉蒂炎,ceratitis ceratiso ceratitis介导的生殖系转化,是转座子介导的果蝇和米诺斯以外的昆虫中转座介导的转基因的首次演示,用于转化蚊子蚊子和橄榄蝇菌(DACUS)。Minos基于果蝇中基于果蝇中的插入诱变现在被确定为该模型生物体中基因组功能分析的重要工具。
Presenilin(PSEN)基因中的突变是早期发作家族性阿尔茨海默氏病(FAD)的最常见原因。在细胞培养,体外生化系统和敲除小鼠中的研究表明,PSEN突变是功能丧失突变,损害了γ-泌尿酶活性。小鼠遗传分析强调了presenilin(PS)在学习和记忆,突触可塑性和神经递质释放以及神经元存活中的重要性,而果蝇研究进一步证明了PS在老化过程中PS在神经元存活中的进化作用。然而,在神经元存活中与PS相互作用的分子途径尚不清楚。为了调节PS依赖性神经元存活的遗传修饰符,我们开发了一种新的果蝇PSN模型,该模型表现出年龄依赖性神经变性和凋亡的增加。经过生物信息学分析,我们使用PSN KD模型中的两个独立的RNAi系在神经元中的每个基因的选择性敲低(KD)测试了排名最高的候选基因。有趣的是,在脂质转运和代谢中,增强PSN KD蝇中神经退行性的9个基因中有4个。具体而言,LPR1和LPR2的神经元特异性KD急剧恶化了PSN KD蝇中的神经退行性,LPR1或LPR2的过表达不会减轻PSN KD KD诱导的神经变性。此外,仅LPR1或LPR2 KD也会导致神经退行性,凋亡增加,攀爬缺陷和寿命缩短。这些发现表明,LPRS调节了依赖PSN的神经元存活,对于衰老大脑的神经元完整性至关重要。最后,LPR1和LPR2的杂合缺失或LPR1或LPR2的纯合缺失类似导致PSN KD Flies中的年龄依赖性神经变性,并进一步加剧神经变性。