第 2 章介绍了天线。本章解释了各向同性和定向辐射元件的原理,并介绍了许多重要概念,包括辐射电阻、天线阻抗、辐射功率、增益和效率。介绍了几种实用的天线形式,包括偶极子、八木波束天线、四分之一波(马可尼)天线、角反射器、波姆和抛物面天线。第 2 章还介绍了馈线(包括同轴电缆和明线类型)、连接器和驻波比 (SWR)。本章最后简要介绍了波导系统。第 3 章的主题是无线电发射机和接收机。本章向读者介绍了 AM 和 FM 发射机以及调谐射频 (TRF) 和超音速外差 (superhet) 接收机的工作原理。选择性、镜像信道抑制和自动增益控制 (AGC) 是现代无线电接收机的重要要求,在继续描述更复杂的接收设备之前,将介绍这些主题。现代飞机无线电设备越来越多地基于数字频率合成的使用,并且描述和解释了锁相环和数字合成器的基本原理。
第 2 章介绍了天线。本章解释了各向同性和定向辐射元件的原理,并介绍了许多重要概念,包括辐射电阻、天线阻抗、辐射功率、增益和效率。介绍了几种实用的天线形式,包括偶极子、八木波束天线、四分之一波(马可尼)天线、角反射器、波姆和抛物面天线。第 2 章还介绍了馈线(包括同轴电缆和明线类型)、连接器和驻波比 (SWR)。本章最后简要介绍了波导系统。无线电发射机和接收机是第 3 章的主题。本章向读者介绍了 AM 和 FM 发射机以及调谐射频 (TRF) 和超音速外差 (superhet) 接收机的工作原理。选择性、镜像信道抑制和自动增益控制 (AGC) 是现代无线电接收机的重要要求,在继续描述更复杂的接收设备之前,将介绍这些主题。现代飞机无线电设备越来越多地基于数字频率合成的使用,并描述和解释了锁相环和数字合成器的基本原理。
研究了具有不确定因果顺序的切换量子通道,用于受量子热噪声影响的量子比特幺正算子相位估计的基本计量任务。报告显示,不确定顺序的切换通道具有特定功能,而传统的确定顺序估计方法则无法实现这些功能。相位估计可以通过单独测量控制量子比特来执行,尽管它不会主动与幺正过程交互 - 只有探测量子比特会这样做。此外,使用完全去极化的输入探针或与幺正旋转轴对齐的输入探针可以进行相位估计,而这在传统方法中是不可能的。本研究扩展到热噪声,之前已使用更对称和各向同性的量子比特去极化噪声进行了研究,它有助于及时探索与量子信号和信息处理相关的具有不确定因果顺序的量子通道的属性。
量子比特是一种量子对象,适用于定义用于编码信息的叠加态。1 对于充当量子比特的物理系统,其相干时间 Tm (即其叠加态的寿命) 必须足够长以允许操纵。2 因此,电子或核自旋,无论是固态系统 3 还是量子点 4,都是编码量子比特的有吸引力的平台。3,5 最近,基于电子自旋的分子量子比特因其性质的化学可调性而引起了该领域的兴趣。6,7 在这些系统中,自旋中心(无论是偶极的还是各向同性的)之间的磁交换相互作用对于建立实现量子逻辑门所需的纠缠条件至关重要。然而,为此目的,应精细地调整量子比特间的相互作用以避免强交换机制 6,8 从而保持每个量子比特的单独可寻址性。各种分子系统已被研究并提议作为多量子比特平台。9 – 13 在这里,可寻址性是通过两种不同的分子设计实现的
CuAl8 合金可用于工业部件,这些部件需要良好的防腐和耐磨性能。该合金具有中等强度和良好的韧性,室温下的断裂伸长率约为 40%。此外,它还具有良好的电导率,尽管低于纯铝或纯铜。尽管具有这些特性,但尚未报道过 CuAl8 合金的增材制造。在这项工作中,使用带和不带原位热锻的直接能量沉积电弧 (DED-arc) 来确定微观结构演变和机械性能。生产的零件上没有发现内部缺陷。热锻与 DED-arc 相结合可减小和均质化晶粒尺寸,提高机械强度和机械性能的各向同性。此外,使用这种新型 DED-arc 变体可降低整个制造部件的残余应力大小。我们强调,这种合金可以通过DED电弧进行加工,并且伴随材料沉积的热锻操作对微观结构细化和均质化具有有益的影响。
携带轨道角动量(OAM)的电子涡流束(EVB)在一系列基本的科学研究中起着关键作用,例如手性能量损坏光谱和磁性二色症光谱。到目前为止,几乎所有实验创建的EVB都表现出各向同性甜甜度强度模式。在这里,基于电子束的位置差异角与沿方位角方向的相位梯度之间的相关性,我们表明可以将自由电子量身定制为具有独立于携带OAM的可自定义强度模式的EVB。作为概念验证,通过使用计算机生成的全息图和设计相掩膜来塑造传输电源显微镜中无入射电子的塑造,将三个结构化的EVB量身定制,以表现出完全不同的强度表现。此外,通过模态分解,我们定量研究了它们的OAM光谱分布,并揭示了结构化的EVB呈现了由本地各种地理学诱导的一系列不同特征态的叠加。这些结果不仅概括了EVB的概念,而且还表现出除OAM外,电子束操纵的高度可控程度。
摘要:我们研究了广告的批量重建,即在机器学习框架内的量子纠缠中的黑洞时空的范围。利用神经普通微分方程与蒙特 - 卡洛整合在一起,我们开发了一种用于连续训练功能的方法,以从纠缠熵数据中提取一般的各向同性大量指标。为了验证我们的方法,我们首先将机器学习算法应用于全息括号熵数据,这些数据来自Gubser-Rocha和超导体模型,这些模型是全息图中强耦合问题的代表性模型。我们的算法从这些数据中成功提取了相应的大量指标。此外,我们通过在半填充的费米子紧密结合链中采用纠缠熵数据将方法扩展到多体系统,并示例关键的一维系统并得出相关的散装度量。我们发现,紧密结合链和Gubser-Rocha模型的指标相似。我们推测这种相似性是由于这些模型的金属属性所致。
这是以下文章的同行评审版本:Li,K,Yin,Z-Y,Cheng,Y,Cao,P,Meng,J。横向各向同性岩石间接拉伸行为的三维离散元件模拟。int j numer肛门方法Geomech。2020; 44(13)1812–1832,以https://doi.org/10.1002/nag.3110的最终形式出版。本文可以根据Wiley使用自算版版本的条款和条件来将其用于非商业目的。未经Wiley的明确许可或根据适用立法的法定权利的明确许可,本文可能不会增强,丰富或以其他方式转化为衍生作品。版权声明不得删除,遮盖或修改。该文章必须链接到Wiley在Wiley在线图书馆上的记录版本,并且必须禁止第三方通过平台,服务和网站提供任何嵌入,框架或以其他方式提供其文章或页面。
为了增加人类神经影像学科学的粒度,我们设计并建立了下一代7 Tesla磁共振成像扫描仪,通过在硬件中实施多个进步,以达到超高分辨率。为了改善空间编码并增加了图像信号噪声比,我们开发了一个唯一的不对称梯度线圈(200 mt m -1,900 t m -1 s -1),并使用了另外的第三层绕组。我们集成了一个具有64和96通道接收器线圈阵列的128通道接收器系统,以在大脑皮层中增强信号,同时降低G因子噪声以实现更高的加速度。16通道发射系统降低了功率沉积和改善的图像均匀性。扫描仪通常在0.35-0.45 mm的各向同性空间分辨率下进行功能成像研究,以揭示皮质层功能活性,在扩散成像中实现高角度分辨率,并减少了功能和结构成像的习惯时间。
当前最先进的量子点发光二极管的外部量子效率受限于较低的光子输出耦合效率。采用纳米棒、纳米片和点盘纳米晶体等取向纳米结构的发光二极管有利于光子输出耦合;然而,它们的内部量子效率往往会受到影响,因此实现净增益一直颇具挑战性。本文报道了各向同性形状的量子点,其特征是由纤锌矿相和闪锌矿相组成的混合晶体结构。纤锌矿相促进偶极-偶极相互作用,从而使溶液处理薄膜中的量子点定向,而闪锌矿相则有助于提升电子态简并度,从而实现定向光发射。这些特性的结合在不影响内部量子效率的情况下改善了光子输出耦合。制备的发光二极管的外部量子效率为 35.6%,并且可以在初始亮度为 1,000 cd m –2 的情况下连续运行 4.5 年,性能损失最小约为 5%。