摘要。遗传编码钙指示剂和光遗传学通过利用光以单细胞精度检测和调节神经活动,彻底改变了神经科学。为了充分利用这些技术的巨大潜力,需要先进的光学仪器,能够以高水平的空间和时间精度将光照射到定制的神经元集合上。具有塑造光束能力的现代光雕刻技术是首选,因为它们可以同时精确瞄准多个神经元,并以与自然神经元动力学相匹配的速率调节单个神经元大集合的活动。最通用的方法是计算机生成的全息术 (CGH),它依赖于放置在相干激光束路径中的计算机控制光调制器来合成定制的三维 (3D) 照明模式并根据需要照亮神经集合。在这里,我们回顾了快速和时空精确的 CGH 技术的开发和实施的最新进展,该技术以 3D 形式雕刻光以光学方式询问神经回路功能。 © 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全注明原始出版物的出处,包括其 DOI。[DOI:10.1117/1.NPh.9.4.041409]
具有优异防水性/粘附性的超疏水/超亲水表面(SBS/SLS)在学术研究和工业环境中都具有重要意义,因为它们在微小液滴和气泡操控中具有有趣的功能。然而,大多数涉及 SBS/SLS 的操控策略仅限于大面积制造或复杂的形貌设计,这明显阻碍了它们的实际应用。在本文中,我们通过一步飞秒激光烧蚀设计和制造了超亲水不锈钢板下方的超疏水聚二甲基硅氧烷窄化双轨(SNDR)。我们的 SNDR 轨道能够在水下自发地、单向地从宽端向窄端输送不同体积的气泡,即使它们被弯曲也是如此。进一步讨论了不同几何双轨配置在气泡输送性能中的力学分析。最后,我们通过实验证明了在多个 SNDR 组合上以设计的体积比无损混合气泡的惊人能力。该方法简单、灵活,具有广泛的潜在应用,如界面科学和微流体中的智能气泡传输、混合和可控化学反应。
(L1) 第一单元:数理逻辑:命题演算:语句和符号、联结词、合式公式、真值表、同义反复、公式等价性、对偶律、同义反复蕴涵、范式、语句演算的推理理论、前提的一致性、间接证明方法、谓词演算:谓词、谓词逻辑、语句函数、变量和量词、自由和有界变量、谓词演算的推理理论。第二单元:集合论:集合:集合上的运算、包含-排斥原理、关系:性质、运算、分割和覆盖、传递闭包、等价性、兼容性和偏序、哈斯图、函数:双射、组合、逆、排列和递归函数、格及其性质。第三单元:组合学和递归关系:计数基础、排列、重复排列、循环和限制排列、组合、限制组合、二项式和多项式系数和定理。递归关系:生成函数、序列函数、部分分式、计算生成函数系数、递归关系、递归关系公式、通过代换和生成函数解决递归关系、特征根法、解决非齐次递归关系
摘要。由于检测和跟踪任务之间的冲突,现有的基于视觉3D感知的端到端跟踪器遭受性能降解。在这项工作中,我们到达了这一骗局的底部,这隐约归因于以前不兼容的特定于任务的对象功能。我们发现这两个任务之间的冲突在于它们部分冲突的分类梯度,这源于它们在积极样本分配中的微妙差异。基于此观察者,我们建议在两个任务中与对象查询中的这些相互矛盾的梯度协调那些冲突的梯度。我们还根据两个任务中的极性动态将所有对象查询分为四组。掩盖了具有冲突的正分配的查询集之间的注意。修改跟踪分类损失以抑制不准确的预测。为此,我们提出了OnEtrack,这是第一个单阶段的接头检测和跟踪模型,该模型弥合了统一对象特征在代表下的检测和跟踪之间的差距。在基于Nuscenes摄像头的对象跟踪基准上,OnEtrack在有效集合上的效果超过6.9%的Amota,在测试集上的作品均优于AMOTA,AMOTA的作品比3.1%。
由大卫·埃勒曼(David Ellerman)在一系列最近的论文中介绍。尽管数学公式本身并不是什么新鲜事物,但Ellerman提供了对S L的声音概率解释,以衡量给定集合上分区的区别。相同的公式是量子力学中熵的有用定义,在该定义与量子状态的纯度概念相关。逻辑熵的二次形式将其自身放在包括负值的概率的概括中,这一想法可以追溯到Feynman和Wigner。在这里,我们根据逻辑熵的概念来分析和重新解释负面概率。在有限的维空间中得出并讨论了逻辑熵的几个有趣的量子样性能。对于有限维空间(连续),我们表明,在唯一的假设中,逻辑熵和总概率是及时保留的,一个人获得了概率密度的进化方程,而概率密度基本上与wigner函数在相位空间中的量子进化基本上相同,至少在一个人中仅在一个相结合时,只有一个稳定的动量变量。这个结果表明,逻辑熵在建立量子物理学的特殊规则中起着重要作用。
可穿戴生物医学系统的快速发展如今使得实时监测脑电图 (EEG) 信号成为可能。这些信号的采集依赖于电极。这些系统必须应对设计挑战,即选择一组在性能和可用性约束之间取得平衡的最佳电极。从更大的电极集合中搜索最佳电极子集是一个具有组合复杂性的问题。虽然现有研究主要集中于仅探索有限组合的搜索策略,但我们的方法提出了一种计算效率高的方法来探索所有组合。为了避免为每种组合训练模型所带来的计算负担,我们利用了一种受小样本学习启发的创新方法。值得注意的是,该策略涵盖了所有可穿戴电极组合,同时与在每种可能的组合上重新训练网络相比,显著减少了训练时间。在癫痫发作检测任务中,所提出的方法在使用八个电极的配置下实现了 0.917 的 AUC 值。这一性能与之前的研究结果相当,但实现所需的时间却少得多,将原本需要数月才能完成的过程在单个 GPU 设备上缩短为数小时。我们的工作可以全面探索可穿戴生物医学设备设计中的电极配置,从而获得可提高性能和实际可行性的见解。
量子近似优化算法 (QAOA) 使用由量子演化的参数化层定义的变分拟设电路来生成组合优化问题的近似解。理论上,随着拟设深度的增加,近似度会提高,但门噪声和电路复杂性在实践中会损害性能。在这里,我们研究了一种 QAOA 的多角度拟设,它通过增加经典参数的数量来减少电路深度并提高近似率。即使参数数量增加,我们的结果表明,对于我们考虑的测试数据集,可以在多项式时间内找到好的参数。与 QAOA 相比,这种新的拟设使无限系列 MaxCut 实例的近似率提高了 33%。最佳性能的下限由传统拟设确定,我们针对八个顶点的图给出了经验结果,即多角度拟设的一层与 MaxCut 问题上传统拟设的三层相当。类似地,在 50 个和 100 个顶点图上的 MaxCut 实例集合上,多角度 QAOA 在相同深度下比 QAOA 产生更高的近似率。许多优化参数被发现为零,因此可以从电路中移除它们相关的门,从而进一步降低电路深度。这些结果表明,与 QAOA 相比,多角度 QAOA 需要更浅的电路来解决问题,使其更适合近期的中型量子设备。
量子计算可能会提供机会,以随着物理时间的进化来模拟强烈相互作用的场理论,例如量子染色体动力学。这将使访问Minkowski-Signature的相关器,与目前进行的欧几里得计算相反。但是,与当今的计算一样,量子计算策略仍然需要限制有限的系统大小,包括有限的,通常是周期性的空间量。在这项工作中,我们研究了这在提取腺形和类似康普顿的散射幅度时的后果。使用Briceño等人中提出的框架。[物理。修订版d 101,014509(2020)],我们估计各种1 d Minkowski签名量的体积效应,并表明这些量可能是系统不确定性的重要来源,即使对于当今欧几里得计算标准的体积也很大。然后,我们提出了一种改进策略,基于有限体积的对称性减少。这意味着产生相同洛伦兹不变的运动点在周期系统中仍可能在物理上不同。我们所证明的是,在数值和分析上,在此类集合上平均都可以显着抑制不需要的体积变形并改善物理散射幅度的提取。由于改进策略仅基于运动学,因此可以在不详细了解系统的情况下应用它。
5.1. 封装柱中的新月形键合位置 5.2. 键合焊盘中的球形键合位置 5.3. 球形键合与相邻金属化的分离 5.4. 球形键合位置毗邻芯片 5.5. 球形键合形成最小值 5.6. 球形键合形成最大值 5.7. 球形键合尺寸(插图) 5.8. 球形键合化合物键合 5.9. 球形键合线出口 5.10. 球形键合线中的变形 5.11. 球形键合线环路,公共线 5.12. 球形键合应力释放和线环路 5.13. 球形键合应力释放和线环路(插图) 5.14. 楔形键合尺寸(插图) 5.15. 楔形键合形成,最小值,小线直径 5.16. 楔形键合形成,最大值,小线直径 5.17.楔形键合形成,大线径 5.18. 楔形键合放置于柱体上,大线径 5.19. 楔形键合线从柱体退出 5.20. 楔形键合应力释放,大线径 5.21. 安全键合 - 新月键合上的球形键合 6. 外部视觉 ......................................................................................................................................................................... 56
通过纳米级天线将电磁能与亚波长的体积结合起来,可用于增强量子发射器的自发发射。以此目的,已经探索了金属和高折射率介电纳米颗粒的不同配置。在这里,我们对三种不同参数的平面金属,高折射率介电和混合纳米antennas进行了比较分析:purcell因子增强,辐射效率和方向性特性。我们将研究重点放在圆柱体二聚体的不同几何和材料组合上。由两种金纳米固定器制成的二聚体是改善自发发射的最有前途的候选者。虽然大多数以前的作品都关注纳米颗粒平面中散射发射的重定向,但我们提出的两个大金缸(r =λ / 4)的纳米结构将大部分辐射向上发射。这种效果是由于对谐振模式的强大四极电贡献。旨在进一步提高方向性特性,将其他硅纳米固定器用作散射辐射的董事,相对于没有董事的金二聚体,将方向性提高了2.4。总的来说,提出了由金二聚体和硅纳米颗粒组成的杂种结构,以增强单个量子点的自发发射并控制其发射模式。这项工作中显示的结果可能是有用的荧光增强或量子光子学中的。它们对于基于量子点和其他纳米级发射器的单光子来源的开发特别有趣。
