剥离层和碳纤维之间的环氧树脂断裂 • 产生新鲜的、化学活性的环氧树脂表面 剥离层织物纤维和环氧树脂基质之间的界面断裂 剥离层纤维断裂 层间失效
玉米育种中最重要的两项活动是开发具有高一般配合力 (GCA) 和特殊配合力 (SCA) 值的自交系,以及鉴定具有高产量潜力的杂交种。基因组选择 (GS) 是一种很有前途的基因组工具,可根据从基因组预测 (GP) 估算的基因组估计育种值对未经测试的育种材料进行选择。在本研究中,进行了 GP 分析,以在三个玉米品系逐个测试试验中估计杂交种、GCA 和 SCA 的谷物产量 (GY) 表现,其中所有材料在 10 到 11 个多地点试验中进行了表型分析,并使用中密度分子标记平台进行了基因分型。结果表明,在模型的所有试验中,包括品系和测试者的加性效应,对杂交种表现的预测能力范围为 0.59 到 0.81。在同时包含加性和非加性效应的模型中,杂交种性能的预测能力得到了提高,所有试验的范围为 0.64 至 0.86。GY 的 GCA 预测能力较低,在仅包含自交系的模型的所有试验中范围为 0.14 至 0.13;在同时包含自交系和测试者的模型的所有试验中,GY 的 GCA 预测能力得到了提高,范围为 0.49 至 0.55,而 GY 的 SCA 预测能力在所有试验中均为负值。测试者之间的 GY 预测能力从 0.66 到 0.82 不等;测试者之间的杂交种性能很难预测。GS 提供了基于分子标记信息预测新杂交种性能和新自交系的 GCA 的机会,通过对更少的多地点试验进行表型分析,可以大幅降低总育种成本。 2021 中国作物学会和中国农业科学院作物科学研究所。由 Elsevier BV 代表科爱传播有限公司制作和托管。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
目的:本研究评估了上颌植入物的咀嚼效率和最大咬合力,由两种植入物支撑的下颌骨过高的假肢和固定的杂种假体的咀嚼力和固定的混合假体。患者和方法:六名从先前研究中招收的完全厌恶的患者安装了下颌倒角,其中包括两个植入物。将四个平行上颌植入物放置在犬和第二磨牙区域。每个患者随机接收BOD和固定的混合假体(FHP)。使用咀嚼口香糖和查看口香糖软件,根据色相的差异评估了咀嚼效率。使用咬合力计,评估了最大咬合力(在纽顿)。使用3个月后,评估了以下上颌假体:完整的义齿(CD),BOD和FHP。使用单向方差分析测试比较了这三组,而使用事后LSD测试比较了两者之间的组。这些统计检验具有5%的显着性阈值。结果:色相的平均方差最高(CD的低混合能力),然后是BOD,最终在FHP上。组之间的最大咬合力的平均值显着变化(p <0.001)。FHP在假体中表现出最大的最大咬合力,其次是BOD,而CD表现出最小的咬合力。结论:考虑到这项研究的结果,上颌四平行植入物FHP的表现优于BOD。在最大咬合力和咀嚼效率方面,这两个假体均表现出优于常规陈述。
当微镜在“开”和“关”位置之间切换时,它们会通过静电力固定到位。确实,在早期的 DMD 原型开发过程中,一些镜子由于较大的(亚微米技术术语)粘合力而倾向于粘附在下面的表面上。这反过来又导致镜子无法切换。造成这种粘合力的原因是什么?有两种现象在起作用。第一种现象是相对简单的,毛细水凝结会导致着陆尖端和着陆表面“卡住”。
电线粘结仍然是微电子包装中的主要互连技术。在过去的三年中,显而易见的是,从AU和Cu线粘合到Cu键合的显着趋势变得显而易见。这是由于一般努力降低诸如AU之类的原材料的制造成本和价格上涨所致。尽管在最近几十年中已经进行了许多研究,但大多数都集中在Au Ball/楔形上。这项研究的结果表明,键合参数,键合质量和可靠性密切相互联系。然而,与AU相比,Cu的不同材料特性(例如对氧化和硬度的依从性)意味着这些见解不能直接传递到Cu键合过程中。因此,有必要进一步研究。本文讨论了在各种键合参数下的键合界面形成的研究。Cu线在AlsICU0.5金属化上键合,并进行了键合参数优化以识别有用的参数组合。根据这种优化,使用低,中和高的美国功率和粘合力的参数组合组装不同的样品。通过剪切测试和HNO 3蚀刻进行了界面分析。在200 c退火168 h和1000 h的设备的横截面上分析了金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。 粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。使用EDX分析退火样品的金属间相形成,并根据相形成动力学进行解释。确定了三个主要的金属间相。2010 Elsevier Ltd.保留所有权利。
摘要:对直径25 μ m的Ag-2.35Au-0.7Pd-0.2Pt-0.1Cu合金丝在不同工艺参数下进行了键合性能试验。利用扫描电子显微镜(SEM)研究了电击发(EFO)电流和EFO时间对无空气球(FAB)变形能力的影响,以及超声功率和键合力对键合特性的影响。实验结果表明:随着EFO电流和EFO时间的增加,FAB从预热尖端生长为小球、规则球,最后生长为高尔夫球,在25 mA和650 μ s时FAB呈现最佳形状。当EFO电流为25 mA时,FAB直径与EFO时间呈非线性关系,可用三次方程表示。进一步研究发现,在键合力一定的情况下,随着超声功率的增加,捣碎的球直径越来越大,毛细孔印迹越来越明显,尾部宽度也随之增大,反之亦然。球键合的最佳超声功率为70 mW,键合力为45 gf;楔键合的最佳超声功率为90 mW,键合力为75 gf。最后,在最佳工艺参数下制备的键合线样品,在破坏性拉力测试后均未发生球键合和楔键合剥离现象,在球剪切测试后键合焊盘上金属间化合物完全覆盖,形貌完好,键合线样品具有较高的键合强度,从而提高了微电子产品的可靠性。该研究为含Pt银基键合合金线的可靠性研究提供了技术支持。
摘要超导涡旋的动力学是由非线性部分微分方程描述的复杂现象。现代方法已启用了有趣的几何形状中模拟涡流动力学。本文包括用于分析超导涡流(例如通量量化和固定)不同现象的基本方法论的描述。该项目的目标是模拟3D中的涡流动力学,以估计不同超导零件中涡旋强度的耦合强度。这些耦合力可能会影响超导MEMS共振器的行为。本文中给出的估计值表明,两个板之间的涡流耦合力将足够重要,足以可测量。为了将本文中的方法与测量的材料参数相结合。
温度和有问题的土壤。高粱是最便宜的微量营养素来源之一。因此,高粱生物强化是重中之重。本综述将讨论高粱作为食物和能量来源的价值,以及其谷物结构如何促进最大程度地利用积累的微量营养素。此外,还有遗传控制/基因、铁和锌浓度的数量性状位点 (QTL)、高粱中铁和锌的杂种优势研究、铁和锌与其他农艺性状之间谷物性状关联的遗传变异,以及根据亲本系性能预测铁和锌杂交性能的潜力。还简要介绍了产品开发和近期消费生物强化高粱的前景。关键词:基因作用;一般配合力;杂种优势;营养敏感农业;数量性状位点;特定配合力
fi g u r e 3九部分的缝合线和fontanelles,包括旋风缝合线,前fontanelle,冠状缝合线,冠状缝合力,鳞状缝合,矢状缝线,lambdoidal缝合力,后缝线,后fontanelle,sphenoidal fontanelle和mastainelle and masteroid fontanelle doction inthere forthanelle ways in 3222 22222222222222222222222222222222222222222222222222222222222222 rection。Metopic缝合线始于nasion,这也是边界1和边界的起点2。矢状缝合线从顶骨的角点开始,这也是边界3和边界的起点和终点4。基于其边界上半标记的宽度差异,确定了Metopic缝合线和矢状缝合线的终点。还通过宽度方差识别位于侧面(蓝色)的其余24个缔约点,该方差确定了其余缝合线的端点。该数字使用了69名受试者的平均PC分数产生的缝合线和Fontanelle的平均形态。
测试生产线上板材平整度测量站,5. 开发用于印刷电路板通孔组装的创新机器人站 ERP 02/22/PRJG/1356 6. 开发用于测试剪刀闭合力的装置设计和软件 ERP