随着该行业不断创新,更先进的基因编辑形式正在出现,以提高准确性和效率。碱基编辑可以对序列中的单个 DNA 字母进行精确修改,目前已在英国和新西兰进行临床试验。Verve Therapeutic 的碱基编辑疗法就是一个例子,该疗法用于治疗杂合子家族性高胆固醇血症,这是一种心脏病,仍然是美国的主要死亡原因。
摘要目的:生物素酶缺乏症(BD)是一种罕见的常染色体隐性代谢疾病,会损害人体回收生物素的能力,这是涉及各种代谢过程的羧化酶酶的关键辅酶。这项研究旨在评估生物素酶缺乏症对血浆中胆碱酯酶活性的影响,假设由生物素回收不足引起的代谢破坏可能导致胆碱酯酶功能的改变。材料和方法:从分为四个遗传组的73个个体收集血浆样品:野生型(n = 12),杂合(n = 30),纯合(n = 19)和化合物杂合子(n = 12)。使用比色法测量胆碱酯酶活性。结果:研究发现,杂合基团的胆碱酯酶活性高于纯合子组(p = 0.0356)。此外,纯合子和复合杂合子的胆碱酯酶活性明显低于野生和杂合基团(p = 0.0272)。统计学上的显着变化表明生物素酶缺乏症与胆碱能活性改变之间存在关系。结论:发现表明,生物素酶缺乏症,尤其是在其严重变体中,可能会导致胆碱酯酶活性大幅降低,这导致受影响患者发现的神经系统症状。需要进行更多的研究来研究这种关联背后的过程,并制定降低BD对胆碱酯酶活性和神经健康健康的影响的策略。
这项研究范围内的改进是可能的,包括将测定法应用于早期繁殖线,最初通过病原体测试验证标记呼叫和更快的提取技术。KASP标记如果我们可以在人口达到近亲状态之前为其选择它们,将特别有用。f2至F4选择是理想的选择,因为杂合子和那些纯合子与易感性连接标记等位基因的纯合子可以立即被丢弃。在随后的几代人中较少的植物/线条将节省繁殖计划中的时间和空间。病原体测试
牲畜的遗传工程(GE)最初是主要使用核对核微注射到Zygotes(1985-1996)的。由于较低的整合效率,由于随机整合而导致的异常转基因表达以及在转基因创始动物中存在遗传镶嵌物,因此该技术的应用受到限制。尽管为国内物种建立了胚胎干细胞(ESC)的巨大努力,但牲畜不存在ESC GE技术。体细胞核转移(SCNT)的发展绕过了牲畜ESC的需求,并通过提供第一个基于细胞的基于细胞的遗传操作的平台来彻底改变牲畜转基因领域。自多莉(Dolly)诞生以来近二十年(1996 - 2013年),SCNT是产生敲除和敲除牲畜的唯一方法。新一代基因编辑技术的CRISPRS/CAS9系统的到来使我们能够轻松有效地引入精确的基因组修饰。这种技术进步加速了SCNT的GE牲畜的产生,并恢复了合子微观渗透,作为重要的GE方法。SCNT技术的主要优点是能够在动物产生之前体外确认所需的遗传修饰。还可以测试编辑的细胞的潜在脱靶突变。此外,这种方法消除了合子微观渗透后经常观察到的遗传镶嵌的风险。复制(2021)162 F11 – F22尽管效率低,但SCNT还是世界上许多实验室的完善程序,并将继续在GE牲畜领域发挥重要作用。
研究设计,大小,持续时间:在小鼠模型中首先优化了CRISPR-CAS9对诱导靶向基因突变的效率。在B6D2F1菌株中比较了两种CRISPR-CAS9递送方法:S期注射(Zygote阶段)(N¼135)ver- SUS Sus-Sus II期(M相)注射(卵母细胞阶段)(卵母细胞阶段)(N¼23)。包括四个对照组:未注射的培养基控制Zygotes(N¼43)/卵母细胞(N¼48);伪造的Zygotes(n¼45)/卵母细胞(n¼47); Cas9-蛋白注射的Zygotes(n¼23);和CAS9蛋白和加扰引导RNA(GRNA)注射的Zygotes(n¼27)。在POU5F1靶向的Zygotes(N¼37),培养基控制Zygotes(N¼19)和假注射的Zygotes(n¼15)中进行了免疫荧光分析(N¼19)(n¼15)。评估POU5F1 -NULL胚胎进一步发展体外的能力,将其他组的POU5F1靶标合子(N¼29)和培养基对照合子(N¼30)培养为种植体后植入阶段(8.5 dpf)。旨在确定归因于菌株变化的POU5F1 null胚胎的发育能力差异,第二个小鼠菌株的Zygotes -B6CBA(n¼52)的目标是针对的。总体而言,在IVM(中期II期)(n¼101)之后,在人卵母细胞中应用了优化的方法。对照组由注射的精子(ICSI)IVM卵母细胞(N¼33)组成。在注入人类CRISPR(n¼10)和培养基对照(n¼9)人类胚胎中进行免疫荧光分析。
步骤 1-B:自我评估 - 审查您的数据,然后完成此自我反思练习:考虑您认为自己在哪些方面已经掌握了技能,以及您希望在哪些方面看到技能水平的增长或提高。以下基本上是内科和儿科里程碑 2.0 的综合子能力。(建议 - 同时打开新创新中的里程碑自我评估可能会有所帮助 - 然后您可以阅读下面每个要点的技能发展阶段的描述。)回顾过去 6 个月的轮岗情况:技能回忆,然后描述展示您在这些技能方面表现出色的情况
注 1:如何进行双等位基因敲除:如果您只有单等位基因敲除(杂合子)并且想要获得双等位基因敲除(纯合子),您可以订购另一个包含不同哺乳动物选择标记(如杀稻瘟素或新霉素抗性标记)的供体载体。OriGene 拥有两种功能性盒。您可以使用新的供体载体再次进行敲除程序以靶向第二个等位基因,因为一个等位基因已被靶向并被 GFP-puro 盒替换。或者,您可以使用 Cre(SKU GE100018)从您编辑的细胞中去除 puro 盒,并使用相同的供体载体靶向第二个等位基因。
图2。为各种结构重排显示了简化的图,模拟的托管矩阵和HG002 / NA24385的示例。每个子图的最左侧图显示了每个bin对的托管计数,矩阵下方的盒子代表基因组箱排序,由矩阵指示。中心托管图显示了指定结构重排的模拟纯合示例,最右边的图显示了HG002 / NA24385中重排的示例,该示例是杂合子或纯合子。反转不是来自HG002。A:无SV; B:杂合插入; C:纯合删除; D:杂合串联复制; E:杂合反转。
摘要 目的 基因研究显示多达 50% 的肥厚型心肌病 (HCM) 患者没有发现致病变异。TRIM63 被认为是导致心肌病的候选基因,尽管其在 HCM 中起因的证据有限。我们试图研究 TRIM63 罕见变异与 HCM 发展之间的关系。方法 通过下一代测序对 4867 例临床诊断为 HCM 的指示病例和 3628 例患有其他心肌病的先证者进行 TRIM63 测序。此外,以 3136 例患有除心肌病以外的家族性心血管疾病(主要是通道病和主动脉疾病)的指示病例作为对照。结果 纳入 16 例具有 TRIM63 罕见纯合或复合杂合变异的指示病例(15 例 HCM 和 1 例限制性心肌病)。在对照人群中未发现纯合或复合杂合。家族评估显示,仅纯合子和复合杂合子有疾病迹象,而所有杂合子家族成员均健康。诊断时的平均年龄为 35 岁(范围 15-69 岁)。50% 的患者患有向心性左心室肥大 (LVH),45% 的患者在第一次检查时无症状。80% 的患病个体检测到显著程度的晚期钆增强,20% 的患者患有左心室 (LV) 收缩功能障碍。50% 的患者患有非持续性室性心动过速。20% 的患者出现不良脑血管事件(20%)。结论 TRIM63 似乎是以常染色体隐性方式遗传的 HCM 的罕见病因,并且与向心性 LVH 和高 LV 功能障碍率有关。
简介:下一代测序(NGS)和生物信息学工具的快速进步使医生可以比以往任何时候都以更快,更具成本效益和全面的方式获得基因检测结果。大约50%的小儿感官听力损失(SNHL)病例是由于遗传病因,因此医师经常使用靶向测序板,这些测序面板鉴定了与SNHL相关的基因中的变体。这些面板允许尽早检测病原变异,使医生可以为家庭提供预期的指导。分子测试并不总是由于存在不同分类的多基因变异物,包括存在不确定意义的变体(VUS),因此并不总是揭示出明显的病因。这项研究旨在在存在其他多基因变异的情况下对与II型Usher综合征相关的患者进行初步的生物信息学表征。我们还为医生提供了一种解释算法,以检查医学遗传学家的分子结果。方法:审查多基因和/或VUS结果的记录,确定了一些潜在的感兴趣主题。为了本研究的目的,两个ADGRV1化合物杂合子符合包容性标准。测序,数据处理和变体调用(从序列数据中鉴定出变体的过程)是在Invitae(San Francisco CA)上进行的。初步分析遵循美国医学遗传学与分子病理协会(ACMG-AMP)在2015年和2019年概述的建议。本研究利用计算分析,预测数据和人群数据以及Clinvar数据库中的图表审查以及公开可用信息的临床信息。结果:将两个受试者鉴定为基因ADGRV1中变体的化合物杂合子。主题1的变体被预测为有害的,而受试者2的变体被预测为无欺骗。这些结果基于Clinvar,多个计算数据,人群数据库以及临床表现的已知信息。