合成生物学是一个新兴的研究领域,科学家可以构建新的生物系统并重新设计现有的生物系统。我们修改基因组的能力深刻影响了我们进行科学研究或设计新医疗疗法的方式。重新发明生物学所产生的新兴后果已经开始影响社会。例如,工程化的人类免疫 T 细胞 (CAR-T) 以出色的表现治愈了癌症 1 ,或“离体”基因疗法成功治愈了严重的遗传疾病,如“泡泡男孩” 2 或镰状细胞病 3 。此外,还出现了多种非医疗应用。已经开发出生长更快的转基因鲑鱼 4 ,或腐烂较少的“CRISPR 蘑菇” 5 。也许有一天,合成生物学可以帮助复活灭绝的物种 6 。生物技术将对我们的生活产生越来越大的影响。
1.3 T HIS W ORK ................................................................................................................................................ 21
神经元。在这种情况下,兴奋的 V2 神经元向其所有 V1 伙伴广播存在扩展轮廓的可能性。这种分布式反馈信号引入了全局背景,鼓励 V1 神经元基于局部证据完成轮廓
要描述的实验与组蛋白在核功能中的作用有关,特别强调了生物合成反应,这些反应通过引入乙酰基和甲基来改变组蛋白的结构。使用乙酸-C14和蛋氨酸 - 甲基-C'4在孤立的小牛胸腺核中研究了这些反应(参见参见参考文献1)作为前体,将它们的不合格与C14-赖氨酸和其他氨基酸的不合格进行比较,并测试普罗蛋白对不同组蛋白分数的合成的影响。将提供证据,以表明在细胞核中,组蛋白的乙酰化和甲基化很可能发生在多肽链完成后。尤其是乙酰化的组蛋白结构的这种修饰可能会影响组蛋白在体内抑制核糖核酸合成的能力。这种观点得到了以下发现的支持:当孤立的精氨酸组蛋白经过有限的乙酰化时,它们会因小牛胸腺核的DNA依赖性RNA聚合酶的RNA合成抑制剂而失去了许多有效性,因此它们的有效性很大。然而,这种修饰的组蛋白仍然是强烈的碱性蛋白质,它保留了与其得出的母体组蛋白相当的DNA的亲和力。这些发现介绍了组蛋白对核RNA的影响可能涉及的可能性不仅仅涉及对RNA合成的简单抑制,并且可能存在更微妙的机制,这些机制允许抑制和重新激活RNA沿染色体的RNA产生。在过去的几年中,对组蛋白作为染色体活性的调节剂的兴趣已大大提高,因为越来越多的实验证据已经积累了支持组蛋白的作用是抑制染色体
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,则使用记录页面上找到的永久性URI(句柄)来引用TSPACE版本。
背景:已提出合成计算机断层扫描(SCT),并越来越多地采用以实现基于磁共振成像(MRI)的放射疗法。深度学习(DL)最近证明了从固定MRI采集中生成准确的SCT的能力。但是,由于模型概括不良,MRI方案可能会随着时间的推移而随着时间的流逝而变化或不同。目的:研究域随机化(DR)以增加脑SCT生成DL模型的概括。方法:收集了95例接受RT患者的CT和相应的T 1加权MRI,带有 /无对比度,T 2加权和FLAIR MRI,考虑到可以研究概括的未见序列的能力。“基线”生成对抗网络进行了 /没有天赋序列的训练,以测试模型在没有DR的情况下的性能。基于SCT的剂量计划的图像相似性和准确性对CT进行了评估,以选择针对基线的表现最佳的DR方法。结果:基线模型在FLAIR上的性能最差,平均绝对误差(MAE)= 106±20.7 HU(平均值±σ)。在MAE = 99.0±14.9 HU的DR模型中,Flair上的性能显着提高,但仍然不如基线 + Flair模型的性能(MAE = 72.6±10.1 HU)。同样,对于DR VS基线,获得了γ速率的提高。结论:DR提高了仅在获得的MRI上训练的未见序列上的图像相似性和剂量准确性。DR使模型更加稳健,从而减少了在未见序列上应用模型时重新训练的需求,并且无法进行重新训练。
石墨烯纳米纤维(GNR)由于通过边缘结构和色带宽度的变化来精确调整电子性能的潜力,因此在纳米电子学上引起了显着关注。然而,GNR与高度渴望的锯齿形边缘(ZGNR)的合成,对旋转和量子信息技术至关重要,仍然具有挑战性。在这项研究中,提出了用于合成一类称为边缘延伸ZGNRS的新型GNR类的设计主题。此基序可以定期沿曲折边缘的边缘扩展进行控制。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。 所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。 此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。
心肌和心律不齐的纤维化变化代表系统性硬化症(SSC)的致命并发症,但是基本机制仍然难以捉摸。小鼠过度表达转录因子FOSL-2(FOSL-2 TG)代表SSC的动物模型。Fosl-2 tg mice showed interstitial cardiac fi brosis, disorganized connexin-43/40 in intercalated discs and deregulated expression of genes controlling conduction system, and developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks并降低了人力资源变异性。用异丙肾上腺素FOSL-2 TG小鼠刺激后,HR反应受损。与FOSL-2 TG相比,免疫dim dim rag2 - / - fosl-2 tg小鼠受到增强的心肌纤维化和ECG异常的保护。转录组学分析表明,FOSL-2-ERVERSESS是造成心脏纤维细胞的纤维性特征的原因,而FOSL-2 TG小鼠中的炎症成分激活了它们的纤维性和心律失常的作用表型。在人类心脏纤维细胞中,FOSL-2超过表达增强了肌纤维细胞的签名,在proinmotal或pro粘连刺激下。这些结果表明,在免疫性条件下,转录因子FOSL-2夸大了肌纤维纤维肌,心律不齐和对压力的异常反应。
摘要。文本对图像合成是机器学习中最具挑战性和最受欢迎的任务之一,许多模型旨在提高该领域的性能。深融合生成的对抗网络(DF-GAN)是图像生成的直接但有效的模型,但它具有三个关键局限性。首先,它仅支持句子级文本描述,从而限制了其从文字级输入中提取细颗粒特征的能力。第二,可以优化残差层和块的结构以及关键参数,以提高性能。第三,现有的评估指标,例如FréchetInception距离(FID),倾向于不适当地强调无关紧要的功能,例如背景,当重点放在生成特定对象上时,这是有问题的。为了解决这些问题,我们引入了一个新的文本编码器,该编码器增强了具有处理单词级描述能力的模型,从而导致更精确和文本一致的图像生成。此外,我们优化了关键参数,并重新设计了卷积和残留网络结构,从而产生了更高质量的图像并减少了运行时间。最后,我们提出了一种量身定制的新评估理论,以评估生成图像中特定对象的质量。这些改进使增强的DF-GAN在有效地产生高质量的文本分配图像方面更有效。