鉴于化学行业对绿色和可持续技术的需求不断增长,他们的原子有效和选择性氧化反应代表了一个关键的挑战。 [1-5]一氧化二氮,N 2 O,在解决此问题中起着重要的作用。 虽然它是一种良好的特种化学物质,主要以其用作麻醉而闻名,但在1980年代,它已开始引起作为选择性氧化剂的大幅关注。 由于其捐赠单个氧原子的能力,它避免了过度氧化的风险,并且尤其是在生态上良性n 2作为唯一的副产品,将其作为许多常规氧化剂的绿色替代品。 [6-8]在接下来的几年中,N 2 O已被证明可以解锁苯对苯酚或甲烷至甲醇的一步氧化的独特途径。 [9,10]前者的高度选择性和便利性,导致了1990年代后期的Alphox过程。 在其中,Boreskov Institute鉴于化学行业对绿色和可持续技术的需求不断增长,他们的原子有效和选择性氧化反应代表了一个关键的挑战。[1-5]一氧化二氮,N 2 O,在解决此问题中起着重要的作用。虽然它是一种良好的特种化学物质,主要以其用作麻醉而闻名,但在1980年代,它已开始引起作为选择性氧化剂的大幅关注。由于其捐赠单个氧原子的能力,它避免了过度氧化的风险,并且尤其是在生态上良性n 2作为唯一的副产品,将其作为许多常规氧化剂的绿色替代品。[6-8]在接下来的几年中,N 2 O已被证明可以解锁苯对苯酚或甲烷至甲醇的一步氧化的独特途径。[9,10]前者的高度选择性和便利性,导致了1990年代后期的Alphox过程。在其中,Boreskov Institute在其中,Boreskov Institute
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,则使用记录页面上找到的永久性URI(句柄)来引用TSPACE版本。
虽然防止合成内容被有害使用的保障措施可以支持组织的隐私和安全工作,但它们也可能无意中造成隐私风险,以及与组织的数据保护承诺和其他法律义务的矛盾。某些技术(例如涉及透明度或身份验证的技术)可能会泄露个人数据,或要求无限期地保存数据,这可能会与数据最小化等隐私原则产生矛盾。某些形式的合成内容检测和身份验证可能还需要收集和分析更多的个人数据,包括私人对话。同时,许多其他因素可能会限制打击有害合成内容的技术的有效性,在制定解决这些危害的整体战略时应考虑到这些因素。
我希望所有听众首先记住的是,当你将人工智能称为聊天机器人和将其称为合成关系时,你脑海中的想法是不同的。正是这种变化开始正确衡量这项技术的强大程度。只要我们称它为聊天机器人,我们就会在我们的脑海中将其视为 20 世纪 90 年代的 AOL 聊天机器人,它并没有那么有说服力,也没有改变我的力量。它不能改变我的想法,改变我的观点,改变我的政治倾向,改变我对自己的感觉。如果每个听这集的人都做一件事,那就是每次看到媒体使用聊天机器人这个词时,就把它划掉,在你的脑海中用合成关系代替它。它不是一个聊天机器人,而是一个你将与之建立关系的新实体。
呼叫气候变化和生物多样性损失的想法威胁着我们星球在所有社会生态和社会经济层面上。气候变化和生物多样性变化本质上是相互联系的。每个人都会根据变化的方向恶化或改善对方的影响,这使得其组合管理对于拥有可居住的气候,自我维持的生物多样性以及所有人的生活质量至关重要。尽管气候变化和生物多样性变化以复杂的相互依存方式相互影响,但它们通常在自己的研究学科中单独解决,因此通常无法完全解决联系。了解社会决定因素和气候生物多样性相互作用的含义为减轻对人和自然的互惠效应提供了机会,对世代代内和几代人的公平产生了影响。
人类的视野。这种能力不仅对于诸如对象操纵和导航之类的实践日常任务至关重要,而且在培养人类创造力方面起着关键作用,使我们能够以深度,幽默感和沉浸感进行设想和制作对象。在本文中,我们重新审视了视图综合问题并提出:我们如何学习一般的3D表示以促进可扩展的视图综合?我们试图从以下两个观察结果中调查这个问题:i)到目前为止,目前的最新进展主要集中在训练速度和/或提高效率上[12,18,18,31,48]。值得注意的是,这些进步都共同依赖于体积渲染以进行场景优化。因此,所有这些视图合成方法固有地是场景特定的,再加上全局3D空间坐标。相比之下,我们主张一个范式移动,其中3D表示仅依赖场景颜色和几何形状,学习隐式表示无需地面真相3D几何形状,同时也从任何特定坐标系统中具有重要的独立性。这种区别对于实现可扩展性至关重要,以超越场景指编码所施加的约束。ii)本质上,视图合成更适合作为有条件的生成建模问题,类似于生成图像中的图像[25,60]。随着可用信息的增加,生成的场景变得更加限制,逐渐收敛于地面真相表示。仅给出一组稀疏的参考视图时,所需的模型应提供多个合理的预测,并利用生成表述中的固有随机性,并从自然图像统计信息和从其他图像和对象中学到的语义先验中获取见解。值得注意的是,现有的3D生成模型通常仅支持单个参考视图[20 - 23,44]。我们认为,更理想的生成配方应具有不同级别的输入信息。在这些见解的基础上,我们引入了Eschernet,这是一种图像到图像的条件扩散模型,用于视图合成。Eschernet利用了使用Dot-Product自我注意力的变压器体系结构[51],以捕获参考对目标和目标对目标视图一致性之间的复杂关系。Eschernet中的一个关键创新是相机位置编码(CAPE)的设计,专门代表4个DOF(以对象)和6个DOF相机姿势。这种编码的速率空间结构进入令牌,使模型能够仅基于其相对摄像机的转换来计算查询和密钥之间的自我注意事项。总而言之,Eschernet表现出以下非凡的特征:•一致性:埃舍内特固有地整合了视图的固定性,这要归功于相机位置编码的设计,从而鼓励了对目标对目标和目标视图视图的一致性。
我们提出了EN3D,这是一种增强的生成方案,用于雕刻高质量的3D人体化身。Unlike previous works that rely on scarce 3D datasets or limited 2D collec- tions with imbalanced viewing angles and imprecise pose priors, our approach aims to develop a zero-shot 3D gen- erative scheme capable of producing visually realistic, ge- ometrically accurate and content-wise diverse 3D humans without directly relying on pre-existing 3D or 2D assets.为了应对这一挑战,我们引入了精心制作的工作流量,该工程实现了准确的物理建模,以从合成2D数据中学习增强的3D生成模型。在推断期间,我们集成了优化模块,以弥合现实的外观和粗3D形状之间的差距。特定于EN3D包含三个模块:一个3D发电机,可以准确地对可概括的3D Humans建模具有合成,多样和结构化的人类图像的逼真外观的可概括的3D Humans;几何雕塑家
合成微生物群落(Syncom)生物传感器是一种有前途的技术,用于检测和响应环境线索和靶分子。Syncom生物传感器使用工程的微生物来创建一个更复杂和多样化的传感系统,从而使它们能够以增强的灵敏度和准确性对刺激做出反应。在这里,我们给出了Syncom生物传感器的定义,超越了他们的建筑工作,并讨论了当前的生物传感技术。我们还强调了开发和优化Syncom生物传感器以及在农业和食品经营中的潜在应用,生物治疗发展,家庭感应,城市和环境监测以及One Health Foundation的挑战和未来。我们认为,Syncom生物传感器可以实时和遥控的方式使用,以感知不断动态的环境的混乱。
心肌和心律不齐的纤维化变化代表系统性硬化症(SSC)的致命并发症,但是基本机制仍然难以捉摸。小鼠过度表达转录因子FOSL-2(FOSL-2 TG)代表SSC的动物模型。Fosl-2 tg mice showed interstitial cardiac fi brosis, disorganized connexin-43/40 in intercalated discs and deregulated expression of genes controlling conduction system, and developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks并降低了人力资源变异性。用异丙肾上腺素FOSL-2 TG小鼠刺激后,HR反应受损。与FOSL-2 TG相比,免疫dim dim rag2 - / - fosl-2 tg小鼠受到增强的心肌纤维化和ECG异常的保护。转录组学分析表明,FOSL-2-ERVERSESS是造成心脏纤维细胞的纤维性特征的原因,而FOSL-2 TG小鼠中的炎症成分激活了它们的纤维性和心律失常的作用表型。在人类心脏纤维细胞中,FOSL-2超过表达增强了肌纤维细胞的签名,在proinmotal或pro粘连刺激下。这些结果表明,在免疫性条件下,转录因子FOSL-2夸大了肌纤维纤维肌,心律不齐和对压力的异常反应。