摘要 处理具有非经典光子统计的简单有效的光子态源对于实现量子计算和通信协议至关重要。在这项工作中,我们提出了一种创新方法,与以前的提案相比,该方法大大简化了非高斯状态的制备,利用了现代量子光子学工具提供的多路复用功能。我们的提案受到迭代协议的启发,其中多个资源一个接一个地组合在一起以获得高振幅的复杂输出状态。相反,在这里,协议的很大一部分是并行执行的,通过使用沿与所有输入模式部分重叠的模式的单个投影测量。我们表明,我们的协议可用于生成高质量和高振幅的薛定谔猫状态以及更复杂的状态,例如纠错码。值得注意的是,我们的提案可以用实验中可用的资源来实现,突出了它的直接可行性。
在通信和其他电路中,通常需要产生一个精确的参考信号,其频率和相位可以实时精确控制。数控振荡器 (NCO) 非常适合此目的。对于某些应用,输出参考信号是方波,因此倾向于仅使用 NCO 输出的 MSB。这在电机控制器等低频应用中很有用,但对于大多数通信任务而言是不够的。这是因为该信号的零交叉可以在一个脉冲与下一个脉冲之间相差一个输入时钟周期,这会在输出中产生不可接受的抖动量。例如,如果 NCO 的时钟频率为 30MHz,则抖动为 33ns。对于 1MHz 方波,这会导致 12 o 的相位抖动。最直接的解决方案是使用 NCO,其性能要高得多
基频为 60 Hz、均方根值为 0.158 V 的失真波形。这些精确失真的波形包含第 3、5、7、9、11、23、31 和 39 次谐波。选择这些谐波是出于以下两个方面的考虑:(a) 使用电力系统中常见且在电能质量文献标准中引用的谐波;(b) 保持谐波相对于频谱分析本底噪声的信噪比足够高,以使相位分辨率优于 0.001 。相对于基波,每个谐波的幅度为 10%,相位为 90 。首先使用 Digitizer1 测量包含基波和上述谐波之一的波形,然后测量包含基波和上述所有谐波的波形(图 2)。两组测量结果之间的差异不超过 0.001 。
申请编号:GAN12-114A-E0011课程:微波及毫米波频率合成器(null)计画:使用0.12μm氮化镓制程实现正交反射型调变器(I/q反射型调制器中的0.12μmGan-Hemt过程中)晶片形式
摘要可逆电路是许多有前途的新兴技术的支柱,例如量子计算、低功耗/绝热设计、编码器/解码器设备以及其他一些应用。近年来,此类电路的可扩展合成引起了广泛关注。在本文中,我们介绍了 SyReC 合成器,这是一种基于硬件描述语言 SyReC 的可逆电路合成工具。SyReC 允许在高抽象级别上描述可逆功能。然后,提供的 SyReC 合成器以按钮方式实现此功能。相应的选项允许在所需电路信号/线路的数量(例如,对于量子计算而言,其中每条电路线路对应一个量子位)和分别所需的门(对应于电路的成本)之间进行权衡。此外,该工具还允许模拟生成的电路以及确定其门成本。 SyReC 合成器作为开源软件包在 https://github.com/cda-tum/syrec 上提供,是慕尼黑量子工具包 (MQT) 的一部分。
WS-5225包括手持无线麦克风WM-5225和多样性无线调谐器WT-5810。WM-5225无线麦克风采用了element冷凝器麦克风胶囊,适用于任何应用。多亏了PLL合成器系统,可提供64个不同的操作频率。高输出功率可确保稳定的无线电信号传输。WT-5810是PLL-合成器控制的双重旋转多样性调谐器,旨在与UHF无线系统一起使用。它采用了纵向降噪电路来最大程度地减少环境RF噪声的影响。
使用高效隔离电源为 RF/IF 和解码器组件提供主电源和底盘之间大于 1 MΩ 的隔离。简单的机械封装设计由单个底盘和一个外部盖子组成,总体积为 3.7 立方英寸。此外,铝合金底盘具有出色的强度重量比以及出色的导热性和导电性。机械封装经过精心设计和环境密封,可在特定的导弹和无人机环境中使用,且不会降低电气性能。每个接收器均可在 420 MHz 至 450 MHz 之间进行现场调谐。频率控制通过对锁相合成器的数字控制执行,该合成器可以 100 kHz 步长进行编程。
5.5.3 RSSI ................................................................................................................................................ 15 5.5.4 SAR ADC .............................................................................................................................................. 15 5.5.5 晶体振荡器 ............................................................................................................................................ 15 5.5.6 频率合成器 ............................................................................................................................................ 16
QuickSyn Lite mmW 合成器模块使用安装在标准 20 GHz QuickSyn Lite 顶部的频率倍增器模块,将频率范围扩展到 mmW 频率。新模块由 Quickyn Lite 基座供电和控制,使用户可以轻松集成和控制。与所有 Quicksyn 合成器一样,这些新的 mmW 源包括串行 SPI 和 USB 控制接口,只需将它们连接到 PC 和直流电源即可立即部署。软前面板允许用户访问频率控制和频率扫描以及 32K 点 LIST 模式设置。此外,嵌入式固件允许将这些模块用作集成自动测试解决方案的一部分。我们已采取措施尽量减少次谐波和杂散。除了在频率转换器应用中用作本地振荡器外,QuickSyn Lite mmW 模块还可以
分数-N频率合成器的设计已成为流行的研究领域。分数-N频率合成器已被广泛,成功地用于需要高精度频率源的范围,例如全球导航卫星系统(GNSS)RF接收器,高精度基站和手机RF收发器芯片等。作为分数-N频率合成器的关键组成部分,频率分隔线提出了更高的要求。因此,高功耗速度和低功耗分数分隔器是高度想要的[1,2,2,3,4,5,6,7,8,9,11,11,11,11,12,13,13,14,15,15,16,17,18,18,19,20]。脉冲吞咽频率分隔线的工作速度限制取决于MC信号(τmc)的延迟时间[1,2,3,20,21,22,23,24,25,26]。在[1]中,采用了d频流以延迟MC,以减少τmc。虽然这种结构固有地具有一个不需要的分裂比例,因为MC信号的集合和重置是由不同的信号触发的。为了解决此问题,在[2,3]中的一个信号触发了MC信号。但是,这两个架构分别导致SR闩锁的可能性不良,并分别增加τmc。在[21,22]中删除了SR闩锁,以避免[2]中提到的问题。此外,所有其他问题,也列出为:保留MC方案,依赖模量的分隔线延迟,操作速度,外部脉冲生成电路和MC信号延迟误差,也被克服了这两个文献。尽管如此,电路的复杂性和功率耗散