合成图生成器(SGG)的主题最近由于生成建模的最新突破而引起了很多关注。但是,许多与图形尺寸相比,许多最先进的SGG并不能很好地扩展。的确,在生成过程中,通常必须考虑固定数量的节点的所有可能边,其中缩放在O(n 2)中,n是图中的节点的数量。因此,许多最新的SGG不适用于大图。在本文中,我们提出了Sangea,这是一个较大的合成图生成框架,可扩展任何SGG对大图的适用性。首先将大图拆分为社区,Sangea每个社区训练一个SGG,然后将社区图形链接在一起以创建合成的大图。我们的实验表明,就拓扑和节点特征分布而言,Sangea生成的图与原始图具有很高的相似性。此外,这些生成的图在下游任务(例如链接预测)上实现了高实用性。最后,我们对生成的图表进行了隐私评估,以表明即使它们具有出色的实用程序,它们也达到了合理的隐私分数。关键字:图生成学习; gnns,属性生成;可伸缩性;隐私
生成AI创建的合成数据可以用于分析图形大数据的多种用途。首先,它有助于数据增强,使研究人员和分析师能够以现实的合成替代方案来补充有限或不完整的数据集[11]。增强过程将培训数据的多样性扩展到机器学习模型中,有助于提高其概括和预测性能。其次,它减轻了与现实世界数据相关的隐私问题,并创建了一个没有与隐私相关的风险的测试和实验环境[12]。这使研究人员能够操纵数据并生成合成图,以探索不同的选项并评估分析技术的鲁棒性。
Ruandha Agung Sugardiman 电子邮件:ra.sugardiman@dephut.go.id ra.sugardiman@gmail.com Ruandha Agung Sugardiman,2007 太空雷达监测森林火灾和森林覆盖率变化。加里曼丹案例研究/Sugardiman,R.A. 博士论文,瓦赫宁根大学,瓦赫宁根,荷兰,参考文献和摘要为英文和荷兰文。ISSN:1566-6522 ISBN-13:978-90-5113-087-4(Tropenbos 版本)ISBN:90-8504-604-1(论文版本)© 2007 MOF – Tropenbos-Kalimantan 计划,R.A. Sugardiman 本出版物中表达的观点均为作者的观点,并不一定反映 Tropenbos International 的观点。未经事先书面许可,不得以任何形式(包括印刷影印、缩微胶卷和电磁记录)复制、重新录制或出版本出版物的任何部分(书目数据和评论中的简短引文除外)。封面:ERS、ENVISAT、SRTM 和 ALOS 卫星;多时相 ERS-2 SAR 合成图和 3D 视图。感谢 ESA、NASA 和 JAXA。由荷兰瓦赫宁根的 Drukkerij Ponsen en Looijen BV. 印刷
摘要:透过密集遮挡重建场景图像是一项重要但具有挑战性的任务。传统的基于帧的图像去遮挡方法在面对极其密集的遮挡时可能会导致致命的错误,因为有限的输入遮挡帧中缺乏有效的信息。事件相机是受生物启发的视觉传感器,它以高时间分辨率异步记录每个像素的亮度变化。然而,仅从事件流合成图像是不适当的,因为事件流中只记录了亮度变化,而初始亮度是未知的。在本文中,我们提出了一种事件增强的多模态融合混合网络用于图像去遮挡,它使用事件流提供完整的场景信息,使用帧提供颜色和纹理信息。提出了一种基于脉冲神经网络(SNN)的事件流编码器,以有效地对事件流进行编码和去噪。提出了比较损失以生成更清晰的结果。在基于事件和基于帧的大规模图像去遮挡数据集上的实验结果表明,我们提出的方法达到了最先进的性能。
由于隐私问题和医学成像领域中公开可用的标记数据集的摘要,我们提出了图像生成管道,以合成具有相应地面真实标签的3D超声心动图图像,以减轻数据收集的需求,并需要对艰苦的和错误的人类标记,以实现深入学习(DL)的图像的艰苦和错误的人类标记。所提出的方法利用心脏的详细解剖分段作为地面真实标签来源。此初始数据集与由真实3D超声心动图图像组成的第二个数据集结合使用,以训练生成的对抗网络(GAN),以合成现实的3D心血管超声图像与地面真相标签配对。为了生成合成3D数据集,训练有素的GAN使用计算机断层扫描(CT)的高分辨率解剖模型作为输入。对合成图像的定性分析表明,心脏的主要结构被很好地描述,并紧随从解剖模型中获得的标记。为了评估这些合成图像在DL任务中的可用性,对分割算法进行了培训,可以描绘左心室,左心房和心肌。对由合成图像训练的模型给出的3D分割的定量分析
具有节点属性的大规模图在各种现实世界应用中越来越普遍。创建镜像现实世界示例的合成,富含属性的图至关重要,尤其是在限制始终数据时共享分析和开发学习模型的图形数据。传统的图生成方法的处理能力有限,无法处理这些复杂的结构。扩散模型的最新进展显示出在没有属性和较小分子图的生成图形结构方面的潜力。但是,由于复杂的属性结构相关性和这些图的大尺寸,这些模型在生成大型属性图时面临挑战。本文介绍了一种新颖的扩散模型,GraphMaker,专为生成大型归因图而设计。我们探索了节点属性和图形结构生成过程的各种组合,发现异步方法更有效地捕获了复杂的属性结构相关性。我们还通过边缘迷你批次生成解决可扩展性问题。为了证明我们在图形数据传播中的实用性,我们引入了新的评估管道。评估表明,GraphMaker生成的合成图可用于为在原始图上定义的任务开发竞争图形学习模型,而无需实际访问这些图形,而许多领先的图形生成方法在此评估中缺乏。我们的实施可在https://github.com/graph-com/graphmaker上获得。
摘要 采用遥感、地理信息系统 (GIS) 和更传统的实地工作技术相结合的方法来评估厄立特里亚中部高地的地下水潜力。对 Landsat TM 和 Spot 的数字增强彩色合成图和全色图像进行解释,以生成岩性和线性构造等专题地图。评估了先进星载热辐射和反射辐射计 (ASTER) 数据用于岩性和线性构造测绘的潜力。从数字高程模型中得出地表曲率、坡度和排水系统等地形参数,并用于绘制地形图。比较了从等高线中得出的数字高程模型 (DEM) 和在航天飞机雷达地形任务 (SRTM) 中获取的数字高程模型 (DEM) 在位置、排水网络和线性构造提取方面的关系。在不同岩石类型中现场测量了裂缝模式和间距,并与线性构造进行了比较。访问了选定的泉水和水井,以研究它们的地形和水文地质环境。收集了井日志、抽水试验、旱季和雨季的地下水位深度以及井的位置。所有专题图层(包括水文地质数据)都整合到地理信息系统中并进行分析。生成地下水潜力图并与产量数据进行了比较。根据大型挖井的水位波动和氯化物质量平衡法估算地下水补给量。P