© 作者 2021。本文根据知识共享署名 4.0 国际许可协议授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativeco mmons.org/licenses/by/4.0/ 。
摘要:随着新卫星数量的急剧增加,全面的太空监视变得越来越重要。因此,高分辨率逆合成孔径雷达 (ISAR) 卫星成像可以提供对卫星的现场评估。本文表明,除了经典的线性调频啁啾信号外,伪噪声信号也可用于卫星成像。伪噪声传输信号具有非常低的互相关值的优势。例如,这使得具有多个通道的系统可以即时传输。此外,它可以显著减少与在同一频谱中运行的其他系统的信号干扰,这对于卫星成像雷达等高带宽、高功率系统尤其有用。已经引入了一种新方法来生成峰值与平均功率比 (PAPR) 与啁啾信号相似的宽带伪噪声信号。这对于发射信号功率预算受到高功率放大器严格限制的应用至关重要。本文介绍了产生的伪噪声信号的理论描述和分析,以及使用引入的伪噪声信号对真实空间目标进行成像测量的结果。
研究人员深入了解植被和土壤表面水分如何变化。 • L 波段合成孔径雷达(L 波段 SAR): “L” 表示信号波长,约为 9 英寸(24 厘米)。L 波段 SAR 可以透过云层和森林冠层的树叶,这些可能会遮挡其他类型仪器的视线。 • S 波段合成孔径雷达(S 波段 SAR): “S” 表示信号波长接近 4 英寸(9 厘米)。S 波段 SAR 能够透过云层和轻质植物覆盖,但它不能像 L 波段 SAR 信号那样穿透茂密的植被。 • 天线反射器:天线反射器呈鼓形,安装在 30 英尺长(9 米长)的吊杆上,是 NASA 有史以来在太空部署的最大的天线反射器,直径近 40 英尺(12 米)。反射器由镀金金属丝网制成,用于聚焦合成孔径雷达发送和接收的信号。发射时,雷达信号被发送到反射器,然后
合成孔径雷达是一种众所周知的技术,用于遥感应用,即使在晚上或在云覆盖面的情况下,具有不间断的成像功能,例如不间断的成像功能。但是,Spaceborne SAR传感器面临着主要挑战,例如成本和规模,这是其适用于对低地球观察应用的未来星座的障碍。SAR传感器不是紧凑的,需要大型或中型卫星,这花费了数亿美元。为了解决这些挑战,最近启动的SpaceBeam项目由欧洲委员会资助,旨在开发一种新颖的SAR扫描方法,利用了混合综合光学波束形成网络(IOBFN)。所提出的光子溶液的紧凑性和频率灵活性符合低地球轨道卫星的未来星座的要求,其重量,重量,功耗和成本(SWAP-C)。
摘要 — 量子算法旨在在基于门的量子计算机中处理量子数据(量子比特)。经严格证明,当输入是某些量子数据或映射到量子数据的某些经典数据时,它们比传统算法具有量子优势。然而,在实际领域,数据本质上是经典的,它们的维度、大小等都非常大。因此,将经典数据映射(嵌入)到量子数据是一个挑战,甚至在基于门的量子计算机中处理映射的经典数据时,量子算法相对于传统算法没有量子优势。对于地球观测(EO)的实际领域,由于遥感平台上的传感器不同,我们可以将某些类型的 EO 数据直接映射到量子数据。特别是,我们有以极化光束为特征的极化合成孔径雷达(PolSAR)图像。极化光束的偏振态和量子比特是物理状态的分身。我们将它们相互映射,并将这种直接映射称为自然嵌入,否则称为人工嵌入。此外,我们使用量子算法在基于门的量子计算机中处理自然嵌入的数据,而不管其相对于传统技术的量子优势如何;即,我们使用 QML 网络作为量子算法来证明我们自然地将数据嵌入基于门的量子计算机的输入量子位中。因此,我们在 QML 网络中使用并直接处理了 PolSAR 图像。此外,我们设计并提供了一个带有额外神经网络层的 QML 网络,即混合量子经典网络,并演示了在使用和处理 PolSAR 图像时如何编程(通过优化和反向传播)这种混合量子经典网络。在这项工作中,我们使用了 IBM Quantum 提供的基于门的量子计算机和基于门的量子计算机的经典模拟器。我们的贡献是,我们提供了具有自然嵌入特征(量子位的 Doppelganger)的非常具体的 EO 数据,并在混合量子经典网络中对其进行了处理。更重要的是,在未来,这些极化SAR数据可以通过未来的量子算法和未来的量子计算平台进行处理,以获得(或展示)相对于传统EO问题技术的量子优势。索引词——自然嵌入、参数化量子电路、极化合成孔径雷达(PolSAR)、量子机器学习(QML)。I.引言最近在构建基于门的量子计算机方面取得了突破,该计算机仅使用极少的量子比特[1]
Capella Space Capella Space成立于2016年,旨在向政府和商业客户提供SAR图像。Capella Space与Inmarsat具有独家协议,使用SpaceX发射车在其36个固定卫星系统上乘车共享。他们目前有100多名员工,总部位于旧金山。迄今为止,他们已经获得了8000万美元的风险投资,并与多个政府客户签订了合同。他们是2019年的空间投球日获奖者,在2020年6月,他们与国家地理空间 - 智能机构签署了合作研发协议(CRADA)。他们的SAR系统完全部署时将具有每小时的全局图像,带状模式分辨率为2M。X波段系统目前每六个小时提供每六个小时的图像。Capella Space正在通过Web界面开发创新的按需任务系统。他们的领导团队具有与美国政府客户的良好证书和联系,他们的咨询团队包括战略组织的前领导者。
天基合成孔径雷达 (SAR) 是一种遥感技术,能够提供地面目标区域的二维或三维重建图像,广泛应用于遥感和地球表面测绘。SAR 是一种主动观测技术,卫星上的大型天线同时发射和接收微波。当发射的微波从地面反射时,接收到的回波提供幅度和相位数据,可用于重建图像。由于 SAR 使用微波操作,它可以在白天和晚上进行成像,并且能够穿透云层和恶劣天气条件,而这些条件会使传统的地球观测 (EO) 技术效率降低 [1]。
估计此信息收集的公共报告负担平均为每份回应 1 小时,包括审查指令、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将有关此负担估计或此信息收集的任何其他方面的意见(包括减轻此负担的建议)发送至华盛顿总部服务部、信息运营和报告理事会,1215 Jefferson Davis Highway,Suite 1204,Arlington,VA 22202-4302,以及管理和预算办公室、文书工作减少项目 (0704-0188)华盛顿特区 20503。1. 仅供机构使用(留空)2. 报告日期 2002 年 9 月 3. 报告类型和涵盖日期 电气工程师论文
德国航空航天中心 (DLR) 微波与雷达研究所 82230 Oberpfaffenhofen,德国 电子邮件:marwan.younis@dlr.de / 网站:www.dlr.de/HR
tohoku.ac.jp › 用户 › sato PDF 2015年1月7日 — 2015年1月7日 雷达通常被称为侧视机载...胶片记录被数字采样和存储所取代。...尺寸和可靠性。