本研究评估了一家化工厂,该工厂通过电气化重整和二氧化碳分离将沼气转化为负排放“绿色氢气”。由于避免了燃烧和通过压力壁的传热,重整器的电气化可以提高合成气产量、紧凑反应器设计和灵活操作。通过部分负荷过程模拟以及通过每小时离散化的年度模拟进行工厂规模和运行优化,评估了该工艺与太阳能和风能发电的结合。研究评估了具有不同风能和太阳能可用性的欧洲不同地区,考虑了 (i) 可再生能源和电池技术的短期和长期成本情景,以及 (ii) 不同的工厂规模(沼气容量从 390 到 3900 Nm3/h)。本文的总体范围是计算生产氢气的成本以及在不同成本情景下安装在不同地点的工厂的灵活性的经济价值。在设计负荷下,评估过程每生产一千克氢气消耗 17.7 千瓦时电力,并在所生产的氢气中保留 96% 的沼气化学能。此外,76% 的生物碳被回收为高纯度液态二氧化碳,实现高达 −9 千克二氧化碳/千克氢气的负排放。当使用 95% 的可再生能源供电时,氢气生产成本为 2.5 至 2.9 欧元/千克(长期 REN 成本情景和大型灵活工厂)到 5.9 – 7.1 欧元/千克(短期 REN 成本情景和小型非灵活工厂)。对于小型工厂,灵活性可以使氢气生产成本在短期可再生能源成本情景下相对于非灵活工厂降低 11 – 16%,在长期成本情景下降低 1 – 4%。对于大型工厂而言,采用灵活工厂可以在短期内将氢气成本降低 17 - 23%,在长期内将氢气成本降低 6 - 22%。
关于 INNIO 集团 (INNIO) INNIO* 集团是一家领先的能源解决方案和服务提供商,帮助行业和社区在当今时代实现可持续能源。INNIO 凭借其产品品牌 Jenbacher* 和 Waukesha* 以及其数字平台 myPlant*,为发电和压缩领域提供创新解决方案,帮助行业和社区在快速变化的传统和绿色能源格局中可持续地生产和管理能源。INNIO 的业务范围是独立的,但规模却是全球性的。INNIO 凭借其灵活、可扩展且有弹性的能源解决方案和服务,使客户能够管理能源价值链上的能源转型,无论他们处于转型旅程的哪个阶段。INNIO 总部位于 Jenbach(奥地利),其他主要业务位于 Waukesha(美国威斯康星州)和 Welland(加拿大安大略省)。一支由 4,000 多名专家组成的团队通过遍布 100 多个国家的服务网络,为 INNIO 在全球范围内交付的 55,000 多台发动机提供生命周期支持。 2023 年 3 月,INNIO 的 ESG 评级在 Sustainalytics 评估的机械行业全球 500 多家公司中排名第一。欲了解更多信息,请访问 INNIO 网站 www.innio.com。在 Twitter 和 LinkedIn 上关注 INNIO 集团及其品牌。关于 Jenbacher – INNIO 集团品牌 INNIO* 集团的 Jenbacher* 能源解决方案包括独立发电机组到发电、热电联产和三联产的完整解决方案。Jenbacher 发动机的功率范围从 250 kW 到 10.6 MW,通过使用从管道气到氢气的广泛能源,为全球向净零排放转型铺平了道路。这些包括可再生绿色氢和其他可再生气体,如沼气、生物甲烷、垃圾填埋气和污水气,以及合成气等特殊气体。凭借 65 多年的持续创新,Jenbacher 技术可实现高效的现场发电、供热和制冷。我们的解决方案适用于各种商业、工业和市政应用。超过 25,000 台 Jenbacher 发动机已交付到约 100 个国家。我们的全球车队由 Jenbacher 直接提供一流的服务,并通过我们广泛的经销商网络提供支持。大多数 Jenbacher 技术都是在 INNIO 总部 Jenbach(奥地利)创新和生产的。欲了解更多信息,请访问 INNIO 网站 www.jenbacher.com 。在 Twitter 和 LinkedIn 上关注 INNIO 。
如图 1 所示,氢气作为能源载体在可持续低碳未来中发挥着重要作用。氢气具有较高的重量密度,是能源和交通运输领域有效的储能介质。氢燃料电池和涡轮机高效清洁地发电和供热为能源和建筑行业脱碳提供了新途径。氢气也是氨和钢铁等各种行业减少碳足迹的重要化学原料。最近,一些国家和地区发布了各自的氢能战略和路线图,如加拿大(加拿大自然资源部,2020 年)、欧盟(欧盟委员会,2020 年)和澳大利亚(澳大利亚政府能源委员会,2019 年)。科学界迫切需要通过发明新的低碳氢气生产和分配技术、量化氢气的好处以及优化各个领域的氢气利用,为向可持续氢气生产和利用的过渡提供有价值的见解。本研究课题涉及氢在能源、燃料和商品应用方面的不同科学、技术和经济方面。发表文章的范围从氢气和氢载体生产到交通和电力领域的氢气利用。本研究课题展示了科学界解决氢相关问题的各种技术和能力:文献综述和专家意见、实验研究、系统规模建模和部门规模分析。来自中国、英国、美国、法国、泰国和德国的作者为本研究课题的出版物做出了贡献。氢气的好处取决于它的生产方式。在全球生产的 6900 万吨氢气中(不包括副产品氢气),近 99% 来自化石燃料(即 76% 来自天然气,23% 来自煤炭)(国际能源署,2019 年),导致了大量碳排放。随着全球对氢的需求不断增加,迫切需要开发更可持续的氢气生产技术以降低相关的碳强度。在本研究课题中,张等人研究了基于生物质的氢电联产系统的系统优化。分析了木屑、日用粪肥、高粱和葡萄修剪废料等原料。在他们的设计中,制氢系统与有机朗肯循环相结合,利用生物质气化炉的高温废热进行发电。最优解预测使用木屑作为生物质原料的氢气产量为 39.31 mol/kg,发电量为 0.99 kWh/kg,氢气产量和发电量在优化中同样重要。Chuayboon 等人在太阳能驱动的热化学氧化还原循环中,分别对甲烷部分氧化和水分解产生的合成气和氢气进行了实验研究。以二氧化铈为基础的网状多孔陶瓷作为氧气
巴黎,法国,2023年7月12日,上午08:00 Haffner Energy,来自剩余生物量的创新脱碳解决方案的设计师和设备供应商,用于移动性,工业和地方当局,以及ROCEILIENT氢气项目开发公司,绿色氢项目开发公司签署了基于Haffners Coarbon-Conologations Coarbon-Nequality nekodice of Coarbon-nequality nekogity nek of Coarbon-nequality nek onguital carbon-nequality nek of Coarbon-Nequality negogation inogity ongoital carbon-nequality。两家公司的联合野心是提供竞争性脱碳解决方案,结合了Haffner Energy的技术,以生产可再生氢,合成气(Syngas)及其衍生物,包括可持续航空航空燃料(SAF)和甲醇,从残留的生物量和甲醇中,以及弹性氢在国际绿色氢盐水管理中的专业知识。这种合作伙伴关系的目的是支持行业的客户和重大流动性在能源过渡中,依靠弹性氢的市场网络,并已经确定了几个项目,特别是在斯堪的纳维亚半岛和伊比利亚。弹性氢的首席执行官兼弹性组的联合创始人的首席执行官Marc Rechter说:“我们看到绿色氢和合伙人以及诸如绿色生物甲醇和可持续航空燃料(SAF)等衍生产品的实质而快速的生长。通过与Haffner Energy的这种合作,我们将能够将项目管道与Haffner Energy改变游戏规则的技术相匹配。这种合作还将使我们能够加速我们在欧洲和国际上的碳负技术的部署”。这项技术现在可以在市售中获得,我们欢迎希望领导其行业发展的公司的问题和要求。” Haffner Energy的联合创始人兼首席执行官Philippe Haffner表示:“我们很荣幸能够为我们的独特解决方案带来可负担得起的可再生氢,Syngas及其衍生物的独特解决方案。关于弹性氢氢氢,欧洲开拓者在不断发展的绿色氢产业和衍生产品(例如绿色的生物甲醇,氨和可持续航空燃料(SAF))的旅程,于2021年进行了旅程,以自2017年以来的弹性集团的广泛氢化活动为基础。专门从事重型流动性领域和工业脱碳化,我们利用技术,工程,金融,研究和创新和政策学科的深度根深蒂固的专业知识来创建安全,可靠且经济上可行的绿色氢解决方案,这些氢解决方案通过氢枢纽为运输和工业脱碳的未来而推动。关于Haffner Energy,一家上市的家族公司由Marc和Philippe Haffner共同创立和共同指导,以及30年的能源过渡的关键参与者,Haffner Energy Designs并提供了创新的脱碳解决方案,以实现出行,行业和地方当局。基于残留生物量和有机废物热解,并受15个专利家族保护的技术,使客户能够生产可再生的氢和同性恋,以及其他绿色能源,例如可持续航空燃料(SAF)和甲醇。
化学部门:精选参考文献 6121 光谱学和动力学 Dunkelberger, AD; Ratchford, DC; Grafton, AB; Breslin, VM; Ryland, ES; Katzer, DS; Fears, KP; Weiblen, RJ; Vurgaftman, I.; Giles, AJet al. 超快主动调节 Berreman 模式。ACS Photonics 2020, 7 (1), 279;https://doi.org/10.1021/acsphotonics.9b01578 Dunkelberger, AD; Ellis, CT; Ratchford, DC; Giles, AJ; Kim, M.; Kim, CS; Spann, BT; Vurgaftman, I.; Tischler, JG; Long, JPet al. 通过载流子光注入主动调节表面声子极化子共振。 Nature Photonics 2018, 12 (1), 50; https://doi.org/10.1038/s41566-017-0069-0 Grafton, AB; Dunkelberger, AD; Simpkins, BS; Triana, JF; Hernández, FJ; Herrera, F.; Owrutsky, JC 硝普钠中的激发态振动-极化子跃迁和动力学。Nature Communications 2021, 12 (1), 214.;https://doi.org/10.1038/s41467-020-20535-z Klug, CA; Miller, JB 自动检测宽 NMR 谱:顺磁性 UF4 的 19F NMR 和负载型 Pt 催化剂的 195Pt NMR。固态核磁共振 2018,92,14-18;https://doi.org/10.1016/j.ssnmr.2018.03.006 Maza, WA;Pomeroy, ED;Steinhurst, DA;Walker, RA;Owrutsky, JC 固体氧化物燃料电池合成气运行中硫污染的光学研究。电源杂志 2021,510,230398;https://doi.org/10.1016/j.jpowsour.2021.230398 6123 材料合成与加工 Chaloux, BL;Yonke, BL;Purdy, AP;Yesinowski, JP;Glaser, ER;Epshteyn, A.; P(CN)3 碳磷氮化物前体扩展固体材料化学,2015, 27 (13), 4507–4510;https://doi.org/10.1021/acs.chemmater.5b01561 Epshteyn, A.; Garsany, Y.; More, KL; Jain, V.; Meyer III, HM; Purdy, AP; Swider-Lyons, KE;通过将催化剂纳米粒子粘附固定在石墨碳载体上来提高电催化剂耐久性的有效策略,ACS Catalysis 2015, 5 (6), 3662–3674; https://doi.org/10.1021/cs501791z Maza, WA、Breslin, VM、Owrutsky, JC、Pate, BB、Epshteyn, A、水合电子的纳秒瞬态吸收和线性全氟烷基酸和磺酸盐的还原,环境科学技术快报,2021,8,7,525-530;https://doi.org/10.1021/acs.estlett.1c00383 MT Finn、BL Chaloux 和 A. Epshteyn,探索反应条件对声化学生成的 Ti-Al-B 燃料粉末形态和稳定性的影响,能源与燃料,2020,34,11373-11380; https://doi.org/10.1021/acs.energyfuels.0c01050 MD Ward、BL Chaloux、MD Johannes 和 A. Epshteyn,《硼硫酸铵中的便捷质子传输——一种适用于中温的未加湿固体酸聚电解质》,《先进材料》,2020 年,2003667;https://doi.org/10.1002/adma.202003667 6124 材料应用概念 Thum, MD;Casalini, R.;Ratchford, D.;Kołacz, J.;Lundin, JG,通过表面诱导无序实现的液晶芯纳米纤维的光致变色相行为。J. Mat. Chem. C,2021,9,12859-12867;https://doi.org/10.1039/D1TC02392F Giles, SL;Sousa-Castillo, A.;Santiago, EY;Purdy, AP;Correa-Duarte, MA;Govorov, AO;Baturina, OA 使用 SiO2-TiO2 复合颗粒和空气进行有害硫化物 2-氯乙基乙基硫化物的可见光驱动氧化。胶体界面科学通讯,2021,41,100362;https://doi.org/10.1016/j.colcom.2021.100362