和葡萄球菌,Satish Bykkam、Venkateswara Rao K、Shilpa Chakra CH. Tejaswi Thunugunta,国际先进生物技术和研究杂志,ISSN 0976-2612,在线 ISSN 2278–599X,第 4 卷,第 1 期,第 1005-1009 页,2013 年。100) 通过机械化学合成合成和表征 MgFe2O4(0.5)/TiO2(0.5) 纳米陶瓷颜料,T.Dayakar、K.Venkateswara Rao、Ch.Shilpa Chakra,国际纳米科学与技术杂志,第 4 卷。 1,No. 1,,PP:01- 08,ISSN:2328-5443,2013年2月。101) Co 掺杂对新型燃烧合成法合成的 ZnO 纳米粒子结构和磁性的影响,V. Rajendar、K. Venkateswara Rao、K. Shobhan、CH Shilpa Chakra,JOURNAL OF NANO- AND ELECTRONIC PHYSICS,Vol. 5 No 1,01022(3页),2012 年。102) 溶液燃烧合成法合成纳米晶体铋铁氧体,V. Sesha Sai Kumar、K. Venkateswara Rao、Ch. Shilpa Chakra、A. Shiva Kishore Goud、T.Krishnaveni,《纳米科学、纳米工程与应用杂志》,第 1 卷,第 2 期,第 52-58 页,2011 年 9 月。 书籍章节:
由于一维线性通道的扩散限制,纳米沸石的合成和催化应用已被证明是提高各种扩散限制烃转化性能的有效策略 [7,8]。由于废物消耗和污染,工业的增长对全球环境构成了严重威胁。应做出更多努力来减少环境污染。解决这一重大问题的有效方法之一是光催化 [9]。尽管许多类型的材料被用于催化,如硫属化物、金属氧化物和钙钛矿 [10,11]。沸石的多孔笼状结构有许多应用,包括气体检测和清洁 [12,13]。沸石可以通过多种方法成功合成,例如盐化、密闭空间合成和微波合成法 [14,15]。已经报道了用微波法制备的纳米级林德 L 型沸石。由于这些金属氧化物和钙钛矿的稳定性较差,研究人员发现沸石是光催化的主要候选材料,因为它的二次氢解程度较低,在正辛烷芳构化中对 C-8 芳烃的选择性较高 [16]。然而,微波合成法被认为耗能,不适合工业应用和技术催化 [17]。因此,开发一种经济高效、易于扩大规模的方法来制备具有改进催化性能的纳米级林德 L 型沸石是极其必要的。幸运的是,一些研究人员观察到加入少量钡可以促进纳米级林德 L 型沸石的形成 [18]。据我们所知,Ba 对林德 L 型结晶过程的影响的解释仍不清楚。全面了解形成过程对于更科学地调节沸石晶体尺寸也具有重要意义。此外,林德 L 型沸石晶体尺寸对正构烷烃芳构化的影响还需要进一步系统研究。Bernard 等人首次报道了非酸性 0.71 nm 一维 12 元环通道的林德 L 型沸石在负载铂的情况下表现出优异的烷烃芳构化性能。通过水热法成功合成了纳米尺寸的林德 L 型沸石[19,20]。林德 L 型沸石具有六方晶体结构(空间群 P-6/mmm),晶胞常数 a = b = 18.4 和 c = 7.5 [21,22]。林德 L 型沸石在过去 20 年中引起了广泛关注
金属磷化物纳米带因特殊的电子结构、大的接触面积和优异的力学性能而成为柔性光电子微器件的理想构建材料。本工作采用拓扑化学方法从结晶红磷纳米带(cRP NR)制备单晶磷化铜纳米带(Cu 3 P NR)以保留 cRP 形貌。Cu 3 P NR 用于在 ITO/PEN 基底上构建柔性光电忆阻器,以 Cu 3 P NR 的天然氧化壳作为电荷捕获层来调节电阻开关特性。基于 Cu 3 P NR 的忆阻器在不同机械弯曲状态和不同弯曲时间下均具有出色的非挥发性存储性能。从基于 Cu 3 P NR 的忆阻器中观察到光学和电学调制的人工突触功能,并且由于记忆回溯功能,使用 Ag/Cu 3 P/ITO 人工突触阵列实现了模式识别。拓扑化学合成法是一种通用方法,可用于生产具有特殊形态和特定晶体取向的纳米结构化合物。结果还表明,金属磷化物是未来光电神经形态计算的忆阻器中的优良材料。
二维 (2D) 过渡金属二硫属化物已成为下一代光电和自旋电子器件的有前途的平台。使用胶带进行机械剥离仍然是制备最高质量的 2D 材料(包括过渡金属二硫属化物)的主要方法,但总是会产生小尺寸的薄片。这种限制对需要大规模薄片的研究和应用构成了重大挑战。为了克服这些限制,我们探索了使用最近开发的动力学原位单层合成法 (KISS) 制备 2D WS 2 和 WSe 2。特别是,我们关注了不同基质 Au 和 Ag 以及硫族元素原子 S 和 Se 对 2D 薄膜产量和质量的影响。使用光学显微镜和原子力显微镜表征了 2D 薄膜的晶体度和空间形貌,从而对剥离质量进行了全面评估。低能电子衍射证实 2D 薄膜和基底之间没有优先取向,而光学显微镜则表明,无论使用哪种基底,WSe 2 在生成大单层方面始终优于 WS 2。最后,X 射线衍射和 X 射线光电子能谱表明 2D 材料和底层基底之间没有形成共价键。这些结果表明 KISS 方法是非破坏性方法,可用于更大规模地制备高质量 2D 过渡金属二硫属化物。
摘要:固体电解质是全固态电池(ASB)的关键成分。它在电极中需要增强锂电导率,并且可直接用作隔膜。锂填充石榴石材料 Li 7 La 3 Zr 2 O 12(LLZO)具有高锂电导率和对金属锂的化学稳定性,被认为是高能陶瓷 ASB 最有前途的固体电解质材料之一。然而,为了获得高电导率,需要使用钽或铌等稀土元素来稳定高导电立方相。这种稳定性也可以通过高含量的铝来实现,从而降低了 LLZO 的成本,但同时也降低了可加工性和锂电导率。为了找到石榴石基固态电池潜在市场引入的最佳点,可扩展且工业上可用的、具有高加工性和良好导电性的 LLZO 合成是必不可少的。本研究采用了四种不同的合成方法(固相反应(SSR)、溶液辅助固相反应(SASSR)、共沉淀(CP)和喷雾干燥(SD))来合成铝取代的 LLZO(Al:LLZO,Li 6.4 Al 0.2 La 3 Zr 2 O 12 ),并进行了比较,一方面关注电化学性能,另一方面关注可扩展性和环境足迹。这四种方法均成功合成,锂离子电导率为 2.0–3.3 × 10 −4 S/cm。通过使用湿化学合成法,煅烧时间可以从 850 °C 和 1000 °C 下的两个煅烧步骤(20 小时)减少到喷雾干燥法下 1000 °C 下仅 1 小时。我们能够将合成扩大到公斤级,并展示不同合成方法的大规模生产潜力。