1 1,达卡工程技术大学机械工程系(二重奏),加兹普尔1707年,孟加拉国2材料与冶金工程系,达卡工程与技术大学(二重奏),加兹普尔1707年,孟加拉国邦加拉德省3核安全部,班克斯群岛,班克斯群岛1707年,班克斯群岛, IUBAT国际商业农业与技术大学机械工程,达卡1230,孟加拉国5物理系,理学院,Jazan University,P.O。 Box 114,Jazan 45142,沙特阿拉伯6马来西亚大学砂拉越大学工程学院,Kota Samarahan 94300,马来西亚7卓越材料研究中心(CEAMR),化学系(CEAMR)和化学系,科学系,科学系,国王Abdulaziz University,P.O. Abdulaziz University,P.O. Box 80203,Jeddah 21589,沙特阿拉伯8纳米技术中心,自然科学系,Coppin州立大学,巴尔的摩,MD 21216,美国 *通信:ASAD@DUET.AC.AC.AC.AC.BD(M.A.C.1,达卡工程技术大学机械工程系(二重奏),加兹普尔1707年,孟加拉国2材料与冶金工程系,达卡工程与技术大学(二重奏),加兹普尔1707年,孟加拉国邦加拉德省3核安全部,班克斯群岛,班克斯群岛1707年,班克斯群岛, IUBAT国际商业农业与技术大学机械工程,达卡1230,孟加拉国5物理系,理学院,Jazan University,P.O。Box 114,Jazan 45142,沙特阿拉伯6马来西亚大学砂拉越大学工程学院,Kota Samarahan 94300,马来西亚7卓越材料研究中心(CEAMR),化学系(CEAMR)和化学系,科学系,科学系,国王Abdulaziz University,P.O. Abdulaziz University,P.O. Box 80203,Jeddah 21589,沙特阿拉伯8纳米技术中心,自然科学系,Coppin州立大学,巴尔的摩,MD 21216,美国 *通信:ASAD@DUET.AC.AC.AC.AC.BD(M.A.C.Box 114,Jazan 45142,沙特阿拉伯6马来西亚大学砂拉越大学工程学院,Kota Samarahan 94300,马来西亚7卓越材料研究中心(CEAMR),化学系(CEAMR)和化学系,科学系,科学系,国王Abdulaziz University,P.O. Abdulaziz University,P.O.Box 80203,Jeddah 21589,沙特阿拉伯8纳米技术中心,自然科学系,Coppin州立大学,巴尔的摩,MD 21216,美国 *通信:ASAD@DUET.AC.AC.AC.AC.BD(M.A.C.Box 80203,Jeddah 21589,沙特阿拉伯8纳米技术中心,自然科学系,Coppin州立大学,巴尔的摩,MD 21216,美国 *通信:ASAD@DUET.AC.AC.AC.AC.BD(M.A.C.); mmrahman@kau.edu.sa(m.m.r.)
DNA测序技术和生物毒素格式的进步揭示了微生物在医学和农业中产生具有不同用途的结构复杂的特殊代谢物的巨大潜力。然而,这些分子通常会重新检查结构修饰以优化它们以供应用,这可能是使用合成化学很难的。生物工程提供了一种互补的结构修饰方法,但通常会因遗传性棘手性而受到影响,并且需要对生物合成基因功能的理解。异源宿主中专门的代谢产物生物合成基因簇(BGC)可以解决这些问题。然而,当前的BGC克隆和操作方法是不具体的,缺乏实现的,并且可能非常昂贵。在这里,我们报告了一个基于酵母的平台,该平台利用了与转换相关的重组(TAR)进行高效率捕获和对BGC的并行操作。作为概念证明,我们克隆,杂酚表达和遗传分析了与结构相关的非核糖体肽epone-epone-epone- mycin和tmc-86a的BGC,阐明了这些重要蛋白质的生物合成中的模棱两可。我们的结果表明,epone- mycin BGC还指导TMC-86A的产生,并揭示了启动这两种代谢产物组装的对比机制。此外,我们的
摘要:通过乙酰胆碱酯酶(ACHE)和丁酰基胆碱酯酶(Buche)抑制增强胆碱能功能被认为是治疗阿尔茨海默氏病的有价值的治疗策略。这项研究旨在评估锌390718的体外效应,锌390718先前使用计算方法对胆碱酯酶进行了研究,并使用分子动力学(MD)仿真来表征该化合物内部胆碱酯酶酶内部的结合模式。还使用富含星形胶质细胞的神经胶质细胞培养研究了体外细胞毒性效应。ZINC390718在高度旋转范围(IC 50 = 543.8 µm)和对Buche(IC 50 = 241.1 µM)的体外双重抑制活性以浓度依赖性方式对ACHE表示,具有较大的活性,具有较大的活性。MD模拟显示锌390718与两个靶标上的催化残基位点形成了重要的疏水性和H键相互作用。促进ACHE靶标的疏水相互作用和H键的残基是Leu67,Trp86,Phe123,Tyr124,Ser293,Phe295和Tyr341,以及在Buche目标上,它们是ASP70,Tyr332,Tyr332,Tyr128,ile442,trp82,trpy197。通过细胞活力评估的Z390718的细胞毒性作用表明该分子的体外毒性低。体外和计算机结果表明,锌390718可以用作对新的双胆碱酯酶抑制剂优化和鉴定的化学型。
psilocybin的细胞生物合成和体内或体外的生物催化途径均由L-色氨酸脱羧酶PSID启动。这种网关脱羧酶是原发性和次级代谢之间的界面,通常依赖于5'-磷酸吡啶量(PLP)作为假体组。[9]相反,PSID对于二次代谢是不寻常的,因为它与磷脂酰丝氨酸脱羧基盒(PSDS)有关。这些是独立于PLP的酶,可以自动裂解C末端部分,称为α链,从蛋白酶中脱离。[10]在裂解过程中,α链将其N末端丝氨酸转化为曲武(Pyr)残基,后者是内在的假体组。切割后,酶具有催化能力,可以在共价结合的PYR的α-碳碳碳与L -TRP底物的主要胺之间形成Schiff碱。[10]
图1:AU上的GNR(111)。 a,CGNR的OmeCGNR和C的FGNR,B的化学结构。 d,AU上FGNR的大型NC AFM地形(111)。 (f 1 = 174。 59 kHz,A 1 = 3 nm,∆ f 1 = - 20 Hz)。 e,Au上OmeCGNR的大型NC AFM地形(111)。 (f 2 = 1。 037 MHz,A 2 = 1。 2 nm,∆ f 2 = - 15 Hz)。 f,CGNR的NC-AFM地形图像。 (f 1 = 160。 01 kHz,A 1 = 5 nm,∆ f 1 = - 7 Hz)。 g,FGNR,H,OmeCGNRS和I,CGNR的长度分布。 J,基于图1和图2中FGNR的人字重建的吸附模型。 1d和2a。 着色对应于表面的相对高度。 k,沿着人字重建的HCP结构域吸附的模型。图1:AU上的GNR(111)。a,CGNR的OmeCGNR和C的FGNR,B的化学结构。d,AU上FGNR的大型NC AFM地形(111)。(f 1 = 174。59 kHz,A 1 = 3 nm,∆ f 1 = - 20 Hz)。e,Au上OmeCGNR的大型NC AFM地形(111)。(f 2 = 1。037 MHz,A 2 = 1。2 nm,∆ f 2 = - 15 Hz)。f,CGNR的NC-AFM地形图像。(f 1 = 160。01 kHz,A 1 = 5 nm,∆ f 1 = - 7 Hz)。g,FGNR,H,OmeCGNRS和I,CGNR的长度分布。J,基于图1和图2中FGNR的人字重建的吸附模型。1d和2a。着色对应于表面的相对高度。k,沿着人字重建的HCP结构域吸附的模型。
结核病是一种已有数百年历史的疾病,近年来随着人类的进化而发展。1 尽管多年来进行了大量研究并开发了新的治疗方式,但结核病仍然是全球公共卫生的威胁。根据世界卫生组织的数据,结核病是全球三大传染病死因之一。每年约有 1000 万人感染结核病 (TB),近 150 万人因此死亡。然而,感染后发展为活动性结核病的风险取决于几个因素,其中之一是人(宿主)对结核病的免疫反应。据观察,结核病 (TB) 也容易在贫困、拥挤和慢性衰弱性疾病猖獗的地方肆虐。尽管结核病仍然是全球资源匮乏国家的主要死因之一,但由于耐药菌株的出现,发展中国家和发达国家的结核病发病率都有所上升。2
下一步涉及HMG − COA还原酶,将HMG -coa转换为甲酸甲酸。汀类药物靶向这种酶在人类中降低血液胆固醇水平。[4]在粪肠球菌中,HMG -COA合成和随后的还原通过双重酶进行。[14] pravastatin据报道会在体外抑制纯化的细菌HMG -COA还原酶。[15]甲氯酸酯被转化为IPP,然后Farneylpyrophrophathate合酶将IPP和DMAPP凝结成Farnesylypropyprophophathate。在人类中,用于治疗骨质疏松症的双膦酸盐(alendronate)强烈抑制这种反应以诱导骨细胞中的凋亡。[16,17]据报道,革兰氏阳性细菌金黄色葡萄球菌吸引了FPP。[18,19]凝结两个FPP分子的小矛烯,该分子被化为氧化,然后循环形成羊毛醇。[20]真菌尖锐的环氧酶被盟友和特比纳芬选择性抑制。[21]然后将羊毛醇通过固醇脱甲基酶转化为Zymosterol,这种反应被甲唑类抗真菌药物(如酮康唑,米诺唑和氯吡唑)所阻断。[22]某些细菌(例如链霉菌菌株)含有单加氧酶,这可能是甲醇抑制的固醇脱甲基酶的同源物。[23]
图 2:BT7455 同时与 CD137 和 EphA2 蛋白结合(表面等离子体共振;SPR 显示),并特异性地与 CD137 阳性 T 细胞结合,导致体外产生强大的 EphA2 依赖性活性。(AB)生物素化的 hCD137 或 hEphA2 固定在 SPR 芯片上,每个循环都设置为用固定蛋白捕获 BT7455,然后注射第二种蛋白(2-3 倍稀释系列),然后再生表面。传感图显示固定的 hCD137-BT7455 复合物 (A) 捕获 hEphA2 或固定的 hEphA2-BT7455 复合物 (B) 捕获 hCD137。 (C、D) 用抗 CD3 刺激人类 PBMC,并用 AF488 标记的 BT7455 处理,流式细胞术监测发现,BT7455 可与 CD8+CD137+ T 细胞 (C) 和 CD4+CD137+ T 细胞结合,但不与 CD137 阴性细胞结合 (n=4 +/-SD;2 个独立 PBMC 供体各 2 个重复;****p<0.0001)。虚线表示平均背景 MFI(仅培养基孔)。(E) Jurkat-CD137 报告细胞与表达 EphA2 的 A549 肿瘤细胞共培养,用 BT7455 或非结合类似物 (BCY13626) 处理,通过发光测量下游 CD137 介导的 NF-k B 活化 (n=3,+/-SD)。 (FG) 用抗 CD3 刺激 PBMCs 并与 A549 细胞共培养,用 BT7455 或非结合类似物 (BCY14736、BCY14797 和 BCY14796) 处理,并通过 Luminex 测量分泌到培养基中的 IFN g 和 IL-2 水平 (n=3,+/-SEM)。 (H) 与 (G) 相同,但 PBMCs 与表达低水平 EphA2 的 ZR75-1 或 T47D 肿瘤细胞共培养。 BT7455 活性依赖于表达高水平 EphA2 的肿瘤细胞 (即 A549) 的存在。 使用 Quantibrite 参考标准通过流式细胞术估计 EphA2 受体表达。
固态合成代表了溶液 - 相化学的替代方案,可以为通常无法通过常规方法提供的材料提供途径。但是,在高压条件下,多个竞争反应途径使化学均匀系统的靶向合成成为挑战。纳米读,通过压缩芳族碳氢化合物形成的一维钻石聚合物为以控制和可预测的方式进行高压反应提供了独特的机会。我们假设,通过仔细考虑分子堆叠和分子间力(例如,H键),可以形成化学均匀的纳米读物,以保留精确的化学功能。在此,我们通过顺序[4 + 2] Diels Alder Cycloadition反应报告了2,5-二甲基辅助酸的可扩展固态聚合。由此产生的纳米读产品装饰有高密度的吊坠基团,为后合成后处理和功能应用提供了新的机会。的过渡金属配位被证明了功能化的线程,代表了纳米读作为独立合成子的利用的概念证明,以及新颖的,扩展的扩展多维网络的可能性。虽然基于溶液的化学合成是可推广的,但由于诸如几何/空间约束和多个能量竞争的途径之类的局限性,固态的受控有机反应在固态中具有挑战性。11-16碳纳米读是一类新型的晶体,在高压下形成的一维SP 3碳纳米材料。1-9然而,具有与传统方法相当的固态中有机反应的一般合成控制将使一系列新的化学物种和合成子具有挑战性或无法获得基于溶液的化学作用。10高压合成代表了控制固态有机转化的一种新兴方法,该方法使新反应能够产生新的结构基序和新型的键合环境(例如,SP 3 3碳富含碳富含碳的结构)。由于通过缓慢的各向异性压缩苯的初始形成,因此已经开发了几种合成策略,以限制潜在反应途径的数量,并通过选择性环加成促进化学均匀产物的形成。18-24,由于纳米读的骨架仅在一个方向上延伸,因此这些超薄碳材料被预测可以将钻石的最高物理特性与传统聚合物的灵活性结合在一起。25-30可以通过仔细选择小分子前体(例如,苯,17,31吡啶,32吡啶嗪23)来精确控制纳米读的化学成分,从而使它们比可比的纳米材料(例如,纳米管)具有潜在的优势。因此,纳米读的可能应用是多种多样的,包括新颖的储能和先进的结构材料。26,33,34然而,含有均匀吊坠官能团的有序纳米读的形成仍然是一个重大挑战。在纳米读形成条件下,吊坠基团容易产生侧面反应,可以产生各种粘结基序。这种副反应会导致化学不均匀的材料形成,从而导致远距离顺序和精确的化学功能丧失。19,35一种可靠的合成纳米读的方法
摘要 之前,我们描述了大量果蝇菌株,每个菌株都携带一个人工外显子,其中包含一个基于 CRISPR 介导的同源重组插入目标基因内含子中的 T2AGAL4 盒。这些等位基因可用于多种应用,并且已被证明非常有用。最初,基于同源重组的供体构建体具有较长的同源臂(>500 bps),以促进大型构建体(>5 kb)的精确整合。最近,我们表明,供体构建体的体内线性化使得能够使用短同源臂(100-200 bps)将大型人工外显子插入内含子中。较短的同源臂使得商业合成同源供体成为可能,并最大限度地减少了供体构建体生成的克隆步骤。不幸的是,大约 58% 的果蝇基因缺乏适合所有注释异构体中人工外显子的编码内含子整合。在这里,我们报告了新构建体的开发,这些构建体允许用 KozakGAL4 盒替换缺乏合适内含子的基因的编码区,从而产生与目标基因类似地表达 GAL4 的敲除/敲入等位基因。我们还开发了定制载体骨架,以进一步促进和改善转基因。在包含目标基因 sgRNA 的定制质粒骨架中合成同源供体构建体,无需注射单独的 sgRNA 质粒,并显著提高了转基因效率。这些升级将使几乎所有果蝇基因都能靶向,无论外显子-内含子结构如何,成功率为 70-80%。