使用正交翻译系统(OTSS)是通过在遗传密码中添加非经典氨基酸(NCAA)来产生非天然蛋白质的最有效方法。在寻求扩展底物特异性时,常规方法始于(超 - )稳定酶,能够承受由于必要突变而导致的结构变化。然而,我们在这里从发展以应对不稳定性的酶开始,从而占据根本不同的位置,因此可能对突变表现出更大的弹性。通过工程化甲烷菌Coides Burtonii的精神病(“冷”)OTS,我们开发了常用的中嗜和热嗜热系统的替代方法。即使在非常低的NCAA浓度下,这种OT在体内效率和滥交方面都显示出显着的特性。鉴于适用的寄主生物的广泛范围,我们预计冷酷将极大地促进扩展的遗传密码从学科转变为高价值化学驱动的生物技术。
势二羧联一种合成酶(TXAS),也称为细胞色素P450(CYP)同工型CYOF5A1,是一种将前列腺素H 2(PGH 2)催化为动力箱A 2(TXA 2)的同源化的酶,是一种有效的脂肪含量(TXA 2),是有效的脂肪量摄入量和互联果的均质均值。TXA 2在非酶上迅速将其水解为无活性代谢物TXB 2。1,2 TXA还催化了PGH 2在丙二醛(MDA)和12(s)-HydroxyheptAdecatrienoic(12(s)-HHTRE),白细胞3(LTB 4)受体2(LTB 4)受体2(BLT 2)Agonist。1与PGH 2反应后,TXA会经历不可逆的催化失活。3 TXA在血小板,单核细胞和巨噬细胞以及几个组织中表达,包括肺,肾脏,胃和结肠,并定位于内质网。3
通过电解质选择作者揭示了分子量对糖化聚噻吩的混合传导的影响:Joshua Tropp,A,†Dilara Meli,B,B,†Ruiheng Wu,C Bohan Xu,B Samuel B.Hunt,D Jason D. Azoulay,D Bryan D. Paulsen,Jonathan Rivnay,A A A A A A A A A A A A A S NORTON WESTERN UNIXICANN,WESWESTERN UNIXICY,EVANSTON,伊利诺伊州伊利诺伊州60208,美国材料科学与工程系,伊利诺伊州伊利诺伊州伊利诺伊州60208,美国伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州。州D州D。尚未彻底探索的一个重要特征是分子量对OMIEC性能的作用。在这项工作中,我们检查了一系列原型糖化的聚噻吩材料(P3meeet),系统地增加了有机电化学晶体管(OECTS)内的分子量 - 一种用于研究混合运输的普通测试型。我们发现,超出中间分子量的性能有所改善,但是,这种关系是电解质依赖性的。Operando分析表明,在NaCl中溶解在NaCl中的大量肿胀可能会因破坏结晶石电荷渗透而在NACL中造成巨大肿胀。这些发现证明了分子量和电解质组成的重要性,以增强OMIEC的性能。TOC ImageTOC Image通过在KTFSI中的操作揭示了分子量的作用,因为掺杂通过阳离子驱动而发生,从而防止了有害的肿胀并保持过敏性途径。
背景和目的:谷胱甘肽合成酶缺乏症 (GSSD) 是一种常染色体隐性遗传病,文献中描述了约 80 名患者。目前,人们对 GSSD 的基因型-表型相关性知之甚少,尽管可以通过突变分析在一定程度上预测其严重程度。在这里,我们描述了四名患有 GSSD 的患者,并评估了他们的基因型和表型。此外,我们还提供了最新的文献综述。方法:我们回顾性地审查了巴勒斯坦耶路撒冷 Al-Makassed 医院过去十年中所有患有 GSSD 患者的病历。我们回顾了医疗管理的文献和最新的治疗研究,并讨论了表型-基因型相关性。结果:我们描述了四名确诊为 GSSD 的患者。临床表现的严重程度各不相同,但患者通常表现为溶血性贫血和乳酸性酸中毒。尿液有机酸分析显示大量乳酸和焦谷氨酸排泄。所有患者均接受了 N-乙酰半胱氨酸、维生素 E、维生素 C 和碳酸氢钠治疗。除一名患者在两个月大时死亡外,所有患者在治疗后均有显著改善。结论:GSSD 的表现与许多其他疾病相似,有时会导致诊断延迟。早期开始治疗可以改善临床结果和整体发展。如果高度怀疑患有 GSSD,则重要的是考虑进行 mRNA 测序,以防止在存在剪接位点突变时延误诊断。
疟原虫引起的感染给世界上最贫穷的社区带来了巨大的负担。我们迫切需要具有新作用机制的突破性药物。作为一种经历快速生长和分裂的生物体,疟原虫恶性疟原虫高度依赖蛋白质合成,而蛋白质合成又需要氨酰基-tRNA 合成酶 (aaRS) 为 tRNA 充电相应的氨基酸。蛋白质翻译是寄生虫生命周期所有阶段所必需的;因此,aaRS 抑制剂具有全生命周期抗疟活性的潜力。本综述重点介绍了使用表型筛选、靶标验证和结构引导药物设计来识别有效的疟原虫特异性 aaRS 抑制剂的努力。最近的研究表明,aaRS 是一类 AMP 模拟核苷磺酰胺的易感靶标,这些靶标通过一种新颖的反应劫持机制靶向酶。这一发现开辟了生成不同 aaRS 的定制抑制剂的可能性,从而提供了新的药物线索。
转移RNA动力学通过调节密码子特异性信使RNA翻译有助于癌症的发展。特定的氨基酰基-TRNA合成酶可以促进或抑制肿瘤发生。在这里我们表明valine氨基酰基-TRNA合成酶(VARS)是密码子偏置翻译重编程的关键参与者,该重编程是由于对靶向(MAPK)疗法在黑色素瘤中的抗性(MAPK)。患者衍生的MAPK治疗耐药性黑色素瘤中的蛋白质组会重新布线,偏向于valine的使用,并且与valine cognate trnas的上调以及VARS的表达和活性相吻合。引人注目的是,VAR敲低重新敏感了MAPK-耐药的患者衍生的黑色素瘤体外和体内。从机械上讲,VARS调节了富含Valine的转录本的使者RNA翻译,其中羟基酰基-COA脱氢酶mRNA编码用于脂肪酸氧化中的关键酶。耐药性黑色素瘤培养物依赖于脂肪酸氧化和羟基乙酰-COA脱氢酶在MAPK治疗后的生存。一起,我们的数据表明,VAR可能代表了治疗耐药性黑色素瘤的有吸引力的治疗靶点。
图 1. SPAAC 与 DBCO-PEG4-Fluor545 反应过程中形成的有机(β-D-葡萄吡喃叠氮化物)与无机(叠氮化钠)叠氮化物的三唑产物表现出不同的相对荧光强度。A) DBCO-PEG4-Fluor 545 与叠氮化物的点击化学或 SPAAC 反应产生的三唑产物取决于与 DBCO 部分反应的有机叠氮化物与无机叠氮化物的类型。这里显示了在 37°C 下 1X PBS 缓冲液(pH 7.4)中 DBCO-PEG4-Fluor 545 (200 µM) 与叠氮化钠或 β-D-葡萄吡喃叠氮化物 (400 µM) 底物发生 SPAAC 反应期间观察到的三唑部分特定吸光度 (B) 和整体产物荧光 (C) 的相对变化。有趣的是,虽然吸光度没有差异,但有机叠氮化物和无机叠氮化物的 SPAAC 反应产物的最终荧光读数明显不同。请注意,吸光度是在 309 nm 处测量的,而荧光是在 550 nm 激发和 590 nm 发射(570 nm 截止)处测量的。灰色方块和红色圆圈分别对应于在指定时间点收集的无机叠氮化物和有机叠氮化物的实验数据。线
非核糖体肽是化学和功能多样的天然产物,具有重要的医学和农业应用。细菌和真菌基因组包含数千种非知名功能的非核糖体肽生物合成基因簇(BGC),为肽发现提供了有希望的资源。可以通过预测非透射体肽合成酶(NRPSS)中腺苷酸(a)结构域的底物(a)结构域来推断这种肽的核心结构特征。但是,现有的域预测方法依赖于有限的数据集,并且经常与选择大型基材或较少研究的域中的域斗争。在这里,我们系统地策划和计算分析了3,254个域,并介绍了两个新的高准确性特异性预测指标,Paras和Parasect。通过应用PARAS鉴定出具有异常高的L- tryptophan特异性的一种新型域,并且在相应的NRP上进行完整的蛋白质质谱法表明它可以指导链霉菌物种中与色氨酸肽相关的代谢产物的产生。在一起,这些技术将加速新型NRPS及其代谢产物的表征。Paras和Parasect可在https://paras.bioinformatics.nl上找到。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
人类遗传疾病通常是由复合杂合性突变引起的,其中突变基因的每个等位基因都具有不同的遗传病变。但是,由于缺乏适当的模型,对此类突变的研究受到阻碍。在这里,我们描述了在强制性酶二聚体中的复合异伴变体的动力学模型,该变体在一个单体中包含一个突变,而第二个单体中的另一个突变中包含一个突变。该酶由人YarS2编码用于Mito-trosyl-tRNA合成酶(MT-Tyrrs),该酶是氨基化酪氨酸到MT-TRNA Tyr的氨基酰基。yarS2是MT-氨基酰基-TRNA合成酶的基因的成员,其中致病性突变的疾病严重程度与酶活性之间的相关性有限。我们在YARS2中识别一对与新生儿死亡有关的化合物杂合变体。我们表明,虽然每个突变在MT-TYRR的同型二聚体中导致氨基酰化的最小缺陷,但反式跨性别的两个突变会协同降低酶活性,从而更大。因此,这种动力学模型准确地概括了疾病的严重程度,强调了其研究YARS2突变的效用及其对具有复合杂合突变的其他疾病的泛化潜力。