为了应对全球变暖和能源问题,各个领域都在推动创新材料的研究和开发。在能源、核能、宇宙环境、放射医学、核聚变和加速器相关设备等领域,材料和设备会发生辐射退化,人们已经利用加工热处理、添加杂质、合金化、微晶化、纳米团簇、氧化物弥散强度 (ODS) 钢、复合材料和纳米纤维材料 [1-23] 等各种方法来提高机械性能、耐腐蚀性和抗辐照性,这些技术已经取得了成功的结果。Viswanathan [23] 根据结果总结了四代结构钢最高使用温度的历史改进速度。在许多情况下,设计高性能抗辐射材料的关键策略是基于引入高密度、均匀的纳米级粒子,这些粒子同时提供良好的高温强度和抗辐射损伤性。
概述 在 IMDEA,纳米压痕技术用于测量材料硬度和杨氏模量随温度的变化,这些材料适用于严酷环境下使用,例如新一代高熵合金 (HEA)。高温室可在受控气氛下进行从室温到 750°C 的测量。耐火 HEA(即 MoNbTaW)是高温应用非常有吸引力的材料,例如航空航天领域的更高使用温度的内燃机,这可以提高燃烧本身的产量。在这项工作中,通过定向能量沉积 (DED) 原位合金化和 V 添加优化了 MoNbTaW 系统,并对其进行了高通量成分筛选 [1]。聚合物的高应变率表征尤为重要,因为这些材料对速率高度敏感。该领域的新发展将为校准纤维增强聚合物复合材料冲击行为的微观机械模型打开大门,并结合应变率相关行为。提出了一种用于高应变率微柱压缩试验的新型测试装置,并将其用于研究环氧树脂在宽应变率范围内的力学行为[2]。
BOEM 信息需求:第 13817 号行政命令和相关的“确保关键矿产安全可靠供应的联邦战略”要求“……增加供应链各个层面的活动,包括勘探、采矿、浓缩、分离、合金化、回收和再加工”。后续行政命令包括 13990 号《保护公共健康和环境并恢复科学以应对气候危机,2021 年》;14017 号《美国的供应链》;以及 13953 号《解决依赖外国对手的关键矿产对国内供应链造成的威胁并支持国内采矿和加工行业》,进一步强调了政府对解决确定更多关键矿产资源需求的关注。这项研究将通过为阿拉斯加阿留申弧中含有潜在海洋矿物的目标区域提供基线和探索性海底观测来帮助实施该指令。对海山群落和底栖生态系统的科学认识将得到增强,并有助于为国家环境政策法所要求的与未来潜在租赁销售、勘探计划以及开发和生产计划相关的分析提供信息。
钛基储氢合金具有较高的吸氢能力、较低的放氢温度以及丰富的资源,是最常见的固态储氢材料之一。本文主要介绍了钛基储氢合金的几种不同制备方法对储氢性能的影响,包括传统制备方法(冶炼、快淬和机械合金化)和新方法(冷轧、等通道转角压制和高压扭转)。对上述制备工艺对应的钛基合金的组织分析和储氢性能进行了较为深入的总结。研究发现,通过强塑性变形(SPD)引入少量的位错、晶界、亚晶界和裂纹等晶格缺陷,有利于改善合金的吸/放氢动力学特性,但SPD可能引起合金成分不均匀和残余应力增加,不利于储氢能力的提高。未来有望将掺杂、改性等新方法、新技术应用于钛基储氢合金,以期在实际应用方面取得突破。
设计高活性催化剂的关键是确定活性的来源。然而,这仍然是一个挑战。[8,9] 特定催化剂的活性传统上与其表面性质有关。因此,具有大表面积、良好导电性和高迁移率的材料被认为是良好的催化剂,因为它们具有丰富的活性位点,有利于氧化还原反应中中间体的吸附和电子转移。这是广泛使用的催化剂合成策略的动机,例如纳米结构化、掺杂、合金化或添加缺陷。每种方法都旨在暴露优先晶体表面或对其进行工程改造以提高其活性。[10–12] 然而,从设计的角度快速准确地确定活性位点的位置仍然是一项艰巨的任务,这使得从许多潜在的有趣材料中发现高性能催化剂成为一项挑战。拓扑材料具有稳健的表面态和高迁移率的无质量电子。 [13–15] 此外,无论是从理论还是实验角度,许多最先进的催化剂(如 Pt、Pd、Cu、Au、IrO 2 和 RuO 2 )都被认为具有拓扑衍生的表面态 (TSS)。[16,17] 因此,有证据表明 TSS 在催化反应中发挥着重要作用。[18,19] 此类状态主要由
本课程旨在提供从家庭到各种工程应用中使用的金属冶金方面的基础知识。它涵盖了材料的基本方面、晶体结构及其表示,以及材料中存在的各种缺陷。然后,讨论了合金化的必要性及其相图中发生的相应变化。特别关注工业中广泛使用的重要黑色和有色合金。包括通过不同的热处理工艺及其微观结构变化来定制材料性能。最后,课程以对金属以外的材料的讨论结束,其中包括聚合物、陶瓷和复合材料等先进材料。课程成果:在课程结束时,学生将能够 1. 解释晶体结构及其缺陷的基本概念,并在立方晶胞中绘制晶体点、方向和平面。2. 解释合金二元相图中存在的各种相,并计算相的质量分数。3. 推荐热处理工艺以实现钢性能的期望变化。 4. 根据性质和应用,区分铁合金和有色合金。根据性质和应用,对聚合物、陶瓷和复合材料进行分类和解释。
钾离子电池 (PIB) 因其在地球上的广泛分布、潜在的价格优势以及钾的标准氧化还原电位低,作为锂离子电池 (LIB) 的有希望的替代品,可用于大规模电能存储系统 (EESS),引起了越来越多的关注。人们广泛寻求能够产生高比容量和高耐久性的用于 PIB 的开发材料,而新兴的合金型阳极材料研究为应对这一挑战提供了重要的前景。本文详细而系统地回顾了 PIB 的合金型阳极及其复合材料的最新进展,以捕捉从基本工作原理到重大进展和成就到未来前景和挑战的关键方面。重点放在关键方面,例如合金化机理和电极设计和结构工程的相关性对提高性能以及电解质相容性、添加剂和粘合剂的关键作用。通过评估该主题上所有重要贡献的评论,可以对研究挑战进行批判性评估,并为未来的研究方向提供见解,从而加速 PIB 作为可行电池储能系统的重要发展。
在电磁干扰屏蔽、天线和电化学能存储与转换电极等应用中,MXene 薄膜需要具有高电导率。由于采用基于酸蚀的合成方法,因此很难分解化学成分和薄片尺寸等因素对电阻率的相对重要性。为了了解内在和外在因素对宏观电子传输特性的贡献,对 Ti y Nb 2- y CT x 系统中的固溶体进行了控制成分和结构参数的系统研究。特别是,我们研究了金属(M)位成分、薄片尺寸和 d 间距对宏观传输的不同作用。硬 x 射线光电子能谱和光谱椭圆偏振法揭示了 M 位合金化引起的电子结构变化。与光谱结果一致,低温和室温电导率以及有效载流子迁移率与 Ti 含量相关,而薄片尺寸和 d 间距的影响在低温传输中最为突出。该结果为设计和制造具有广泛电导率的 MXene 提供了指导。
第一单元 金属结构:固体中的键 – 金属键 – 金属结晶、缺陷、晶粒和晶界、晶界对金属/合金性质的影响 – 晶粒大小的确定。合金的组成:合金化的必要性、固溶体的类型、休谟-罗瑟里规则、中间合金相和电子化合物。第二单元 平衡图 平衡图的实验构建方法、同质合金系统、合金的平衡冷却和加热、杠杆规则、共晶系统、一致熔化中间相、包晶反应。固态转变、同素异形体、共析体、包析反应、相规则、平衡图与合金性质之间的关系。Fe-Fe3C 二元相图的研究。第三单元 铸铁和钢:白口铸铁、可锻铸铁、灰口铸铁、球墨铸铁、合金铸铁的结构和性能。钢的分类、普通碳钢、低合金钢、高锰钢、工具钢和模具钢的结构和性能。有色金属和合金:铜及其合金、铝及其合金、钛及其合金的结构和性能。第四单元合金的热处理:合金元素对铁-铁碳系统的影响、退火、正火、硬化、TTT 图、回火、硬化能力、表面硬化方法、时效硬化陶瓷材料:结晶陶瓷、玻璃、金属陶瓷。
第一单元 金属结构:固体中的键 – 金属键 – 金属结晶、缺陷、晶粒和晶界、晶界对金属/合金性质的影响 – 晶粒大小的确定。合金的组成:合金化的必要性、固溶体的类型、休谟-罗瑟里规则、中间合金相和电子化合物。第二单元 平衡图 平衡图的构建实验方法、同质合金系统、合金的平衡冷却和加热、杠杆规则、共晶系统、一致熔化中间相、包晶反应。固态转变、同素异形体、共析体、包析反应、相规则、平衡图与合金性质之间的关系。Fe-Fe3C 二元相图的研究。第三单元 铸铁和钢:白口铸铁、可锻铸铁、灰口铸铁、球墨铸铁、合金铸铁的结构和性能。钢的分类、普通碳钢、低合金钢、高锰钢、工具钢和模具钢的结构和性能。有色金属和合金:铜及其合金、铝及其合金、钛及其合金的结构和性能。第四单元合金的热处理:合金元素对铁的影响-铁碳系统、退火、正火、硬化、TTT 图、回火、硬化能力、表面硬化方法、时效硬化陶瓷材料:结晶陶瓷、玻璃、金属陶瓷。