这项研究评估了人工神经网络(ANN),基因表达编程(GEP)和HEC-HMS模型在评估伊朗北部卡西利亚集水区径流的影响方面的HEC-HMS模型。从2007年到2021年的每日数据分为校准(2007- 2018年)和验证(2018-2021)。结果表明,当单独应用时,GEP和ANN模型在所有性能指标(包括RMSE和NSE)中超过了HEC-HMS模型。此外,与单个机器学习(ML)或HEC-HMS模型相比,将HEC-HM与GEP和HEC-HMS与ANN的HEC-HMS和HEC-HMS集成的混合模型相比表现出色。使用LARS-WG软件生成了输入变量(温度和降雨),并结合了五个气候模型和SSP585场景,用于未来的气候变化研究。此外,这些混合模型还用于预测观察到的时期(2007-2018)和未来期(2031-2050和2051-2070)的径流变化。结果表明,年平均降水量,极端降水事件和降水强度的增加,这意味着未来卡西利亚集水区的洪水和侵蚀可能性更高,伊朗北部的小集水集也是如此。
吉安甘加理工学院 (1)、奇特卡拉大学工程技术学院 (2)、应用科学私立大学 (3)、乌拉尔联邦大学 (4)、塔吉克斯坦技术大学(以 MS Osimi 院士命名)(5) ORCID:1. 0000-0002-5157-2485;2. 0000-0001-9822-8246;3. 0000-0003-1028-2729;4. 0000-0001-7493-172X;5. 0000-0003-3433-9742;6. 0000-0002-9869-288X; doi:10.15199/48.2024.10.12 能源部门通过微控制器自动进行功率因数校正 摘要。目前,能源部门对每个人来说都越来越重要,包括消费、生产、分配和监控。因此,本研究主要关注通过全自动方式提高功率因数。本文介绍了一种基于物联网 (IoT) 的系统。该系统完全自动化,可提高功率因数,还可监控能源消耗,从而准确计算要显示的所有参数数据,例如功率、电流、功率因数消耗等。可以通过带有 Web 服务器的 IoT Blink 平台通过无线技术访问和获取参数数据。通过控制器单元测量和监控参数数据,通过继电器计算并传输到电容器组,以补偿该系统中的滞后功率因数。最后显示功率因数校正的结果,可以更有效地监控功率损耗和能源消耗。Streszczenie。 Obecnie sektor Energyczny 开玩笑 dla wszystkich ze względu na zużycie, produkcję, Dystrybucję i 监控。 Dlatego też niniejsze badanie koncentruje się głównie na poprawie współczynnika mocy poprzez pełną automatyzację. Wartykule przedstawiono 系统oparty na Internecie Rzeczy (IoT)。系统十项与自动自动化、流行性配置、能源监控、能源参数调整、参数设置、维护、保养współczynnika mocy itp。 Dostęp do danych parametrycznych i ich uzyskanie można uzyskać za pośrednictwem bezprzewodowego technologia Poprzez platformę IoT Blink z Serwerem WWW.参数化和参数化监控是红色网络中最重要的参数,它可以隐藏和隐藏所有相关的参数,并可在任何情况下使用。 w tym 系统。如果您想了解更多有关能源的信息,请参阅我们的信息。 ( Automatyczna korekcja współczynnika mocy za pomocą mikrokontrolera w sektorze energetyczn ym) 关键词:能源、功率因数、物联网、控制器、电容器组。功能:能源、电源、互联网连接、控制器、电池连接器。简介 如今,能源部门以消费、生产、分配和监测为基础,这与直接或间接功率因数有关。功率因数是电力供应系统的重要分析,根据能源部门的所有观点,这更为重要 [1]。并且还确定了电源利用中的所有类型的损耗,例如功率因数和损耗成反比,如果功率因数低,则损耗不断增加,功率因数高,则损耗不断改善。因此,现代工业完全关注这一因素,并使用与无功功率相关的不同类型的技术和用途来提高功率因数。功耗可以通过接近 1 的功率因数来定义,并且保持并联电容器组的帮助以实现功率因数校正 (PFC) 是一种非常成熟的方法 [2]。最近,能源领域的研究主要集中在自动切换方法上,这在实时应用中更为重要。例如使用基于 MCU 嵌入式系统 [3],物联网嵌入式提供所有类型的校正监控,并控制所有类型的切换和监控 [4]。这种概念在现代工业中使用,并根据功率因数获得更多控制,从而提高电气系统的效率。低功率因数会造成大量损耗,这些损耗会缩短能源部门设备的使用寿命 [5]。因此,功率因数值应始终保持在 0 到 1 之间。功率因数接近 0.95 的值对任何电力系统来说都是不错的。因此,根据电力标准 [2-9],上述功率因数的改善在电力系统中更为重要。提高电力系统的整体效率。低功率因数会造成大量损耗,这些损耗会缩短能源部门设备的使用寿命 [5]。因此,功率因数值应始终保持在 0 到 1 之间。功率因数接近 0.95 的值对任何电力系统来说都是好的。因此,根据电力标准 [2-9],上述功率因数的提高在电力系统中更为重要。提高电力系统的整体效率。低功率因数会造成大量损耗,这些损耗会缩短能源部门设备的使用寿命 [5]。因此,功率因数值应始终保持在 0 到 1 之间。功率因数接近 0.95 的值对任何电力系统来说都是好的。因此,根据电力标准 [2-9],上述功率因数的提高在电力系统中更为重要。
在您逗留期间,我们旨在促进有意义的讨论,演讲和交流,以增强我们的持续合作,包括发表手稿和集思广益的想法,以在我们的两个实验室之间进行研究赠款建议。此外,您参加我们预定的会议无疑将丰富我三位博士生的研究努力。我们很高兴接待您,并预期有生产力的互动,这将推动我们的联合项目前进。
2 中国杭州大学,杭州310027, *通讯作者:Lei Li,Sinopec Nanjing化学工业研究所,有限公司,Nanjing 210048,210048年,5月01日出版,2024年5月01日,该书是一本书,该书是Lei liian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian in. yutian duan in。 (li,l。; duan,Y。 基于工程聚合物的多孔膜,用于可持续锂离子电池分离器。 聚合物2023,15,3690。https://doi.org/10.3390/polym15183690)如何引用本书章节:lei li,Yutian Duan。 锂离子电池分离器的进步:工程聚合物多孔膜的综述。 in:Alexandru Vasile Rusu和Monica Trif,编辑。 聚合物技术中的Prime档案:第2版。 印度海得拉巴:录像。 2024。 ©作者2024。 本文根据创意共享归因4.0国际许可(http://creativecommons.org/licenses/4.0/)的条款分发,该条款允许在任何媒介中不受限制地使用,分发和再现,前提是原始工作被正确引用。 作者贡献:概念化,L.L。 和Y.D. ;方法论,L.L。 ;正式分析,Y.D。 ;调查,L.L。 和Y.D. ;写作 - 原始草稿准备,L.L。 ;写作 - 浏览中国杭州大学,杭州310027, *通讯作者:Lei Li,Sinopec Nanjing化学工业研究所,有限公司,Nanjing 210048,210048年,5月01日出版,2024年5月01日,该书是一本书,该书是Lei liian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian in. yutian duan in。 (li,l。; duan,Y。 基于工程聚合物的多孔膜,用于可持续锂离子电池分离器。 聚合物2023,15,3690。https://doi.org/10.3390/polym15183690)如何引用本书章节:lei li,Yutian Duan。 锂离子电池分离器的进步:工程聚合物多孔膜的综述。 in:Alexandru Vasile Rusu和Monica Trif,编辑。 聚合物技术中的Prime档案:第2版。 印度海得拉巴:录像。 2024。 ©作者2024。 本文根据创意共享归因4.0国际许可(http://creativecommons.org/licenses/4.0/)的条款分发,该条款允许在任何媒介中不受限制地使用,分发和再现,前提是原始工作被正确引用。 作者贡献:概念化,L.L。 和Y.D. ;方法论,L.L。 ;正式分析,Y.D。 ;调查,L.L。 和Y.D. ;写作 - 原始草稿准备,L.L。 ;写作 - 浏览中国杭州大学,杭州310027, *通讯作者:Lei Li,Sinopec Nanjing化学工业研究所,有限公司,Nanjing 210048,210048年,5月01日出版,2024年5月01日,该书是一本书,该书是Lei liian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian in. yutian duan in。 (li,l。; duan,Y。 基于工程聚合物的多孔膜,用于可持续锂离子电池分离器。 聚合物2023,15,3690。https://doi.org/10.3390/polym15183690)如何引用本书章节:lei li,Yutian Duan。 锂离子电池分离器的进步:工程聚合物多孔膜的综述。 in:Alexandru Vasile Rusu和Monica Trif,编辑。 聚合物技术中的Prime档案:第2版。 印度海得拉巴:录像。 2024。 ©作者2024。 本文根据创意共享归因4.0国际许可(http://creativecommons.org/licenses/4.0/)的条款分发,该条款允许在任何媒介中不受限制地使用,分发和再现,前提是原始工作被正确引用。 作者贡献:概念化,L.L。 和Y.D. ;方法论,L.L。 ;正式分析,Y.D。 ;调查,L.L。 和Y.D. ;写作 - 原始草稿准备,L.L。 ;写作 - 浏览中国杭州大学,杭州310027, *通讯作者:Lei Li,Sinopec Nanjing化学工业研究所,有限公司,Nanjing 210048,210048年,5月01日出版,2024年5月01日,该书是一本书,该书是Lei liian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian dimian in. yutian duan in。(li,l。; duan,Y。基于工程聚合物的多孔膜,用于可持续锂离子电池分离器。聚合物2023,15,3690。https://doi.org/10.3390/polym15183690)如何引用本书章节:lei li,Yutian Duan。锂离子电池分离器的进步:工程聚合物多孔膜的综述。in:Alexandru Vasile Rusu和Monica Trif,编辑。聚合物技术中的Prime档案:第2版。印度海得拉巴:录像。2024。©作者2024。本文根据创意共享归因4.0国际许可(http://creativecommons.org/licenses/4.0/)的条款分发,该条款允许在任何媒介中不受限制地使用,分发和再现,前提是原始工作被正确引用。作者贡献:概念化,L.L。和Y.D.;方法论,L.L。;正式分析,Y.D。;调查,L.L。和Y.D.;写作 - 原始草稿准备,L.L。;写作 - 浏览
2023 年 Vigyan Jyoti 会议由 JNV Mahe 组织,面向海得拉巴地区的年轻人,于 2023 年 11 月 18 日至 20 日举行。它为学生提供了一个交流想法、见解和创新的平台,旨在塑造 STEM 教育和职业前景。本着协作和知识共享的精神,VJ 会议汇集了来自 STEM(科学、技术、工程和数学)各个领域的各种专业人士、专家和爱好者。本次活动包括鼓舞人心的演讲;关于 STEM 最新动态的有趣测验,关于女性在 STEM 中的作用等重要问题的对话,以及实践研讨会,人们可以在那里了解 STEM 概念及其在现实生活中的运用。所有这些活动都提供了广泛的见解,可以帮助我们在共同努力中走向激动人心的新可能性。
体细胞突变可能在植物进化中起作用,但与植物体细胞突变有关的常见期望仍未得到充分的测试。与大多数动物不同,假定植物种系在发育后期被搁置,这导致人们期望植物会沿生长积累体细胞突变。因此,对躯体突变的命运做出了一些预测:突变在植物组织中的频率通常很低。高频的突变具有更高的代际传播的机会。树的分支拓扑决定了突变分配;暴露于紫外线(紫外线)辐射会增加诱变。为了深入了解植物中突变的积累和传播,我们产生了两个高质量的参考基因组和一个独特的数据集,该数据集的60个高覆盖范围 - 整体 - 基因组序列的两种热带树种,番茄科植物(Fabaceae)(fafaceae)(fafaceae)和sextonia rubra(lauraceae)。,我们在D.圭亚那的D. guianensis中发现了15,066个从头突变,在S. rubra中发现了3,208个,令人惊讶的是,几乎全部都以低频发现。我们证明1)低频率突变可以传输到下一代; 2)突变系统发育偏离树的分支拓扑; 3)突变率和突变光谱并不明显受到紫外线暴露差异的影响。总的来说,我们的结果表明,植物生长,衰老,紫外线暴露和突变速率之间的联系比通常想象的要复杂得多。
麦格理港水生生态系统高度分层,表层为淡水,富含单宁,中层为咸水,深层水盐度接近海洋盐度(EPA 2017)。这些特点共同决定了深层港口水域与海洋的交换有限,导致港口深处和中层的氧气含量自然较低(Wild-Allen 等人,2020 年)。虽然港口的天然氧气水平历来变化很大,但监测数据表明,港口和集水区的人类活动(包括水产养殖和上游水力发电)也会影响溶解氧 (DO) 浓度。监测数据表明,大约在 2009 年,溶解氧浓度开始大幅下降。虽然近年来出现了一些改善的迹象,但溶解氧浓度仍远低于 2009 年的水平(Ross 等人,2022 年)。
科尔哈普尔是一座历史名城,位于印度西部马哈拉施特拉邦潘查甘加河畔,是该邦人均收入最高的城市。它以古老的玛哈拉克希米神庙等寺庙、新宫、沙利尼宫、巴瓦尼曼达普等古老宫殿以及兰卡拉湖而闻名。科尔哈普尔以科尔哈普里面包、棕榈糖和许多其他独特的东西而闻名。在科尔哈普尔王储 Chhatrapati Shahu Maharaj 的创新和社会改革领导下,这座城市在本世纪初成为西南马哈拉施特拉邦和邻近卡纳塔克邦北部各阶层和各社区的教育机会中心。希瓦吉大学成立于 1962 年,以伟大的马拉塔战士和马拉塔的创始人命名