为了在接收机上测试真实场景,将调制干扰源(同信道和相邻信道干扰源)和加性高斯白噪声 (AWGN) 的不同组合应用于移动无线电话的两个输入。这些组合分布在两个天线之间(图 5)。同信道干扰源在同一频率上叠加下行链路信号,而相邻信道干扰源在紧邻此频率的一个信道(100 kHz)上可用。就时间而言,两个干扰源都与下行链路信号相匹配。
CEPT 报告 71 涉及了 2017 年委员会授权的任务,即研究将智能交通系统 (ITS) 的安全相关频段扩展到 5.9 GHz。关于道路 ITS 的同信道共存解决方案,CEPT 在 2024 年 3 月 8 日致欧盟委员会的信函 1 中强调,根据现行监管框架,道路 ITS 技术之间的共存不属于 CEPT 的职权范围,该框架不偏向特定技术,如委员会决定 (EU) 2020/1426 所述。关于城市轨道 ITS 和道路 ITS 之间的同信道共存解决方案,CEPT 应继续酌情与 ETSI 合作,以便在 ETSI 规范和标准的相关发展可用时予以考虑。该事项被有意排除在当前授权之外,因为该事项仍在 ETSI 中审议,并且可能需要 CEPT 根据 2017 年委员会授权进行额外更新。根据上述 CEPT 信函,CEPT 可以
3. 为什么是数字广播?现有的 AM 和 FM 模拟系统存在固有缺陷,并且都无法在整个覆盖范围内提供均匀的接收质量。 AM 广播接收受到带宽限制(会限制音频质量)以及来自其他同信道和相邻信道传输的干扰的限制。这在夜间尤其麻烦。20 世纪 50 年代开始的 FM 服务提高了音频带宽并克服了夜间干扰,但广播被设计为使用带有外部天线的固定接收器接收。在车辆或便携式设备上收听时,接收会受到反射信号(多径)和其他形式干扰的影响,尤其是在郊区和城市地区。
为了更好地了解 Wi-Fi 对蓝牙的影响,Silicon Labs 测量了 100% 占空比 802.11n(MCS3,20 MHz 带宽)阻断器在不同功率水平下传输时的影响,同时接收以足以实现 0.1% BER(接收灵敏度)的功率水平传输的蓝牙 1Mbps 37 字节有效载荷消息。下图显示了同信道、相邻信道和“远”信道的结果。所有 802.11n 和蓝牙功率水平均参考 Silicon Labs EFR32MG21 RF 输入。测试应用程序是使用 Silicon Labs Bluetooth 2.11.0 或更高版本的堆栈开发的,在 EFR32 DUT(被测设备)上运行 soc-dtm 示例应用程序,并使用测试脚本来控制 DUT 和 RF 测试设备。
• 在任何时刻,所有用户(移动用户)都在一个编号的无线电小区中工作 • 小区的无线电属性包括传播覆盖和多径效应 • 小区是按照特定规划安排布局的大量小区之一,由小区群组成 • 分配给群中每个小区的频率在其他群中重复使用 • 因此,移动用户在工作时会同时受到同信道和相邻信道干扰 • 移动用户必须在控制所有小区运行的固定电信网络上注册 • 网络可以帮助移动用户在移动时从一个小区切换到另一个小区 • 为了管理漫游,移动用户必须不断地向固定网络发送信号和从固定网络接收信号 • 消息通道是双工的,可以是语音或数据 • 蜂窝网络可以与公共电话网络互连 • 移动电话必须具有频率灵活性、携带电池并具有识别号码
摘要 —为了将无人机 (UAV) 整合到未来的大规模部署中,一种新的无线通信模式,即蜂窝连接无人机,最近引起了人们的关注。然而,以视距为主的空对地信道以及蜂窝地面基站 (GBS) 的天线方向图给蜂窝连接的无人机通信带来了严重的干扰问题。特别是,复杂的天线方向图和下倾天线的地面反射 (GR) 会为天空中的无人机造成覆盖漏洞和不均匀的覆盖,从而导致底层蜂窝网络连接不可靠。为了克服这些挑战,我们在本文中提出了一种新的蜂窝架构,该架构在现有的地面用户设备 (GUE) 下倾天线之上采用一组额外的面向天空的同信道天线来支持无人机。为了对下倾天线引起的 GR 进行建模,我们提出了一种路径损耗模型,该模型同时考虑了天线辐射模式和配置。接下来,我们制定了一个优化问题,通过调整上倾天线的上倾 (UT) 角度来最大化无人机的最小信号干扰比 (SIR)。由于这是一个 NP 难题,我们提出了一种基于遗传算法 (GA) 的启发式方法来优化这些天线的 UT 角度。在获得最佳 UT 角度后,我们集成了 3GPP Release-10 指定的增强型小区间干扰
摘要 — 为了将无人机 (UAV) 融入未来的大规模部署,一种新的无线通信模式,即蜂窝连接无人机,最近引起了人们的关注。然而,以视距为主的空对地信道以及蜂窝地面基站 (GBS) 的天线方向图给蜂窝连接的无人机通信带来了严重的干扰问题。特别是,下倾天线的复杂天线方向图和地面反射 (GR) 会为天空中的无人机造成覆盖漏洞和不均匀的覆盖,从而导致底层蜂窝网络连接不可靠。为了克服这些挑战,在本文中,我们提出了一种新的蜂窝架构,该架构在现有的地面用户设备 (GUE) 下倾天线之上采用一组额外的朝向天空的同信道天线来支持无人机。为了对下倾天线产生的 GR 进行建模,我们提出了一种路径损耗模型,该模型同时考虑了天线辐射方向图和配置。接下来,我们制定了一个优化问题,通过调整上倾天线的上倾 (UT) 角度来最大化无人机的最小信号干扰比 (SIR)。由于这是一个 NP 难题,我们提出了一种基于遗传算法 (GA) 的启发式方法来优化这些天线的 UT 角度。在获得最佳 UT 角度后,我们集成了 3GPP Release-10 指定的增强小区间干扰
此过程以了解适用于各种情况的适当保护比为基础。保护比 (PR) 是有用信号功率 3 与干扰信号的比率 S / I,必须达到或超过该比率才能确保获得满意的接收效果。保护比通常以 dB 表示。PR 的值取决于有用信号和干扰信号类型的特定组合。它还取决于有用信号和干扰信号频谱之间的重叠程度。当某个频段仅由或主要由一种无线电服务以信道化方式使用时(许多广播频段都是这种情况),频谱规划仅要求针对与同信道、相邻信道和第二相邻信道操作相对应的频率偏移确定适当的 PR。这些 PR 记录在 ITU-R 中,并与有用信号和干扰信号的传播预测一起作为规划过程的一部分应用。添加新传输时,必须限制(预计)干扰,以免干扰已约定的服务区内现有的服务。可以进行一个简单的测试:在给定位置,有用信号的场强是否超过某个最小值,即所谓的最小受保护场强?如果超过,则应保护其接收,干扰信号场强不得超过有用信号的场强除以 PR 的 4。
单元 I 蜂窝概念系统设计基础:简介、频率重用、信道分配策略、切换策略 - 优先切换、实际切换考虑、干扰和系统容量 - 同信道干扰和系统容量、无线系统的信道规划、相邻信道干扰、减少干扰的功率控制、中继和服务等级、改善蜂窝系统的覆盖范围和容量 - 小区分裂、扇区划分。第二单元移动无线电传播:大规模路径损耗:无线电波传播简介、自由空间传播模型、功率与电场的关系、三种基本传播机制、反射-电介质反射、布儒斯特角、完美导体反射、地面反射(双射线)模型、衍射-菲涅尔区几何、刀刃衍射模型、多重刀刃衍射、散射、室外传播模型-Longley-Ryce 模型、Okumura 模型、Hata 模型、Hata 模型的 PCS 扩展、Walfisch 和 Bertoni 模型、宽带 PCS 微蜂窝模型、室内传播模型-分区损耗(同一楼层)、楼层间分区损耗、对数距离路径损耗模型、爱立信多断点模型、衰减因子模型、信号穿透建筑物、射线追踪和场地特定建模。第三单元移动无线电传播:小规模衰落和多径:小规模多径传播-影响小规模衰落的因素、多普勒频移、多径信道的脉冲响应模型-带宽和接收功率之间的关系、小规模多径测量-直接射频脉冲系统、扩频滑动相关器信道探测、频域信道探测、移动多径信道参数-时间弥散参数、相干带宽、多普勒扩展和相干时间、小规模衰落的类型-由于多径时间延迟扩展而导致的衰落效应、平坦衰落、频率选择性衰落、由于多普勒扩展而导致的衰落效应-快速衰落、慢速衰落、多径衰落信道的统计模型-Clarke 的平坦衰落模型、Clarke 模型中由于多普勒扩展而导致的频谱形状、Clarke 和 Gans 衰落模型的模拟、电平交叉和衰落统计、双射线瑞利衰落模型。
1. 理解蜂窝通信概念 2. 研究移动无线电传播 3. 研究无线网络不同类型的 MAC 协议 UNIT -I 蜂窝概念-系统设计基础:简介、频率重用、信道分配策略、切换策略 - 优先切换、实际切换考虑、干扰和系统容量 - 同信道干扰和系统容量、无线系统的信道规划、相邻信道干扰、减少干扰的功率控制、中继和服务等级、提高蜂窝系统的覆盖范围和容量 - 小区分裂、扇区划分。第二单元移动无线电传播:大规模路径损耗:无线电波传播简介、自由空间传播模型、功率与电场的关系、三种基本传播机制、反射-电介质反射、布儒斯特角、完美导体反射、地面反射(双射线)模型、衍射-菲涅尔区几何、刀刃衍射模型、多重刀刃衍射、散射、室外传播模型-Longley-Ryce 模型、Okumura 模型、Hata 模型、Hata 模型的 PCS 扩展、Walfisch 和 Bertoni 模型、宽带 PCS 微蜂窝模型、室内传播模型-分区损耗(同一楼层)、楼层间分区损耗、对数距离路径损耗模型、爱立信多断点模型、衰减因子模型、信号穿透建筑物、射线追踪和场地特定建模。第三单元移动无线电传播:小规模衰落和多径:小规模多径传播-影响小规模衰落的因素、多普勒频移、多径信道的脉冲响应模型-带宽和接收功率之间的关系、小规模多径测量-直接射频脉冲系统、扩频滑动相关器信道探测、频域信道探测、移动多径信道参数-时间弥散参数、相干带宽、多普勒扩展和相干时间、小规模衰落的类型-由于多径时间延迟扩展而导致的衰落效应、平坦衰落、频率选择性衰落、由于多普勒扩展而导致的衰落效应-快速衰落、慢速衰落、多径衰落信道的统计模型-Clarke 的平坦衰落模型、Clarke 模型中由于多普勒扩展而导致的频谱形状、Clarke 和 Gans 衰落模型的模拟、电平交叉和衰落统计、双射线瑞利衰落模型。第四单元均衡和分集:介绍、均衡基础知识、训练通用自适应均衡器、通信接收器中的均衡器、线性均衡器、非线性均衡器