体外表征 ADAR 异构体的 RNA 编辑特异性和体外表征 ADAR 异构体的 RNA 编辑特异性和脱氨酶结构域
摘要:第二信使分子 3'5'-环磷酸腺苷 (cAMP) 对哮喘、慢性阻塞性肺病 (COPD) 和特发性肺纤维化 (IPF) 等肺部疾病具有多种有益作用。cAMP 在哮喘和 COPD 中具有支气管扩张作用,同时还具有抗纤维化特性,可限制纤维化。磷酸二酯酶 (PDE) 代谢 cAMP,从而调节 cAMP 信号传导。虽然一些现有疗法可以抑制 PDE,但只有广泛的家族特异性抑制剂。对 cAMP 信号传导区室的了解(其中一些以脂质筏/洞穴为中心)引起了人们对定义特定 PDE 亚型如何维持这些信号微区室的兴趣。阻塞性肺病中 PDE 表达可能改变,从而导致 cAMP 信号传导异常,对此的研究很少。我们认为,抑制特定的 PDE 亚型可通过放大离散微区中的特定 cAMP 信号来改善阻塞性肺病的治疗。
尤其是在肝脏中,有一系列CYP450同工酶参与异生物生物的生物降解,而其他几种CYP450同工酶则参与了HOR-Monnes的生物合成。CYP通常充当单氧酶,并通常通过脂肪族或芳族羟基化反应将一个从O 2的氧原子安装到底物中。2尽管CYP不知道激活木质素链,但有证据表明它们与木质素片段反应,即单体,二聚体或三聚体。是特定的,最近已经确定了两个降解木质素的CYP同工酶,即CYP255A,也称为GCOA和CYP199A4。前者已显示出多种木质素单体的多样性,并通过氧气激活与由O- Dealkylation和芳族羟基化产生的相应产物反应。3因此,CYP255A结合了木质素碎片肠guethol,并执行氧化的O-二乙基化以形成儿茶酚和乙醛产物,4
1. 简介 5α-还原酶 (5a-R) 可在细胞内将睾酮转化为双氢睾酮 (DHT)。在成年男性中,DHT 与良性前列腺增生 (BPH)、前列腺癌和雄激素性脱发 (男性型脱发) 有关 [1,2]。5a-R 的两种主要同工酶是:(i) 1 型,主要存在于皮肤和肝脏中;(ii) 2 型,主要存在于男性生殖器和毛囊中。两种 5a-R 同工酶均在前列腺组织中表达 [2]。3 型同工酶的数据有限,但在前列腺基底上皮细胞中表达 [3]。非那雄胺 (FIN) 和度他雄胺 (DUT) 是最常用的 5a-R 抑制剂 (阻断剂)。在体外,度他雄胺是比非那雄胺(2 型 5a-R 抑制剂)更有效的 1 型(45 倍)和 2 型 5a-R(2.5 倍)抑制剂 [1]。文献中已多次证明这两种药物在降低 DHT 水平、减少脱发和前列腺问题方面的有效性 [4]。FIN 被批准用于治疗男性雄激素性脱发,FIN 和 DUT 均可用于治疗 BPH。
摘要:谷胱甘肽S-转移酶(GST)是参与动物排毒过程的必不可少的酶。它们催化抗氧化剂谷胱甘肽(GSH)的偶联到各种亲电的化合物,例如环境毒素,致癌物和代谢副产品,形成胃酸,这些苏联酸是水溶性更大的,可以被排除。此过程可保护细胞免受氧化应激和化学损害的影响,而在肝,肾脏和肺等排毒器官中,GST尤其丰富。除解毒外,GST还调节了信号转导,凋亡和细胞增殖等细胞过程。GST从兔肝脏中纯化,产量为22倍,产量为78-80%。使用1-氯-2,4-二硝基苯作为底物评估酶活性,导致91 µmole/min/mg/mg蛋白的特定活性。凝胶过滤,以揭示酶的天然分子量约为50,000。聚丙烯酰胺凝胶电泳(SDS-PAGE)来检查酶的亚基组成,并使用染色体来确定其等电点(PI)。来自兔肝脏的纯化GST酶表现出两个不同的亚基,分子量为28,000和27,000,所有酶活性与天然聚丙烯酰胺凝胶电泳中的单个蛋白质带有关。该酶在6.5左右显示出最佳的pH值,并受热的影响最小,在室温下存储八天后,保留了50%的活动。酶与1,2-氧基-3-(硝基苯氧基)丙烷和乙酰乙酸等底物的谷胱甘肽降低显示较高的共轭速率。染色体将GST分解为七个同工酶,PI值范围为7.96至9.6。主要同工酶(PI 8.6)负责超过94%的整体活性,并由两个半相同的亚基组成。该研究成功纯化和表征了兔肝GST,揭示了其亚基组成,等电点和底物特异性。研究结果表明,兔肝脏包含具有相似免疫学特性的多种同工酶,主要同工酶负责大多数酶活性。这种纯化和表征提供了对动物组织中GSTS的酶特性和功能多样性的见解。各种抑制剂和兔肝脏的底物活性的作用进行了测试。
肾缺血再灌注 (I/R) 损伤可导致肾功能不全,严重情况下需要肾脏替代治疗,给患者的康复和生活带来沉重负担。减轻肾脏 I/R 损伤是当前的研究重点。蛋白激酶 C (PKC) 同工酶是肾脏中的主要同工酶,PKCβII 是其主要同工酶。铁死亡在肾脏 I/R 导致的急性肾损伤中起着至关重要的作用。本研究旨在探索 PKCβII 在肾脏 I/R 中的作用及其与铁诱导细胞死亡的潜在关联。该研究使用小鼠肾脏 I/R 模型,检查了各种预处理方法(包括 Ruboxistaurin(一种 PKCβII 抑制剂)和 Erastin(一种铁死亡激动剂))对肾脏损伤的影响。该研究还深入探讨了 PKCβII 在铁诱导细胞死亡中的作用及其潜在机制。研究结果表明,PKCβII 在肾脏 I/R 过程中被激活,抑制 PKCβII 激活可改善肾功能障碍和组织损伤。此外,肾脏 I/R 损伤中铁诱导的细胞死亡显著增加,而抑制 PKCβII 可通过抑制 PKCβII/ACSL4 通路来减轻铁死亡。总之,结果表明 PKCβII 可能参与介导肾脏 I/R 损伤,而针对性抑制 PKCβII 激活可能成为改善肾脏 I/R 损伤的一种新疗法。
溴唑仑 I 期代谢主要由 CYP450 酶系统的几种同工酶(CYP2B6、CYP2C19、CYP3A4、CYP3A5 和 CYP2C9)介导,而 II 期代谢涉及同工酶 UGT1A4 和 UGT2810。单羟基化代谢物包括 4-羟基化溴唑仑和 -羟基溴唑仑,以及另一种脱羟基代谢物 -5-二羟基溴唑仑。葡萄糖醛酸化后, -羟基葡萄糖醛酸和 N -葡萄糖醛酸是最丰富的 II 期代谢物。有关该化合物药效学的信息仅限于一项关于其与 -氨基丁酸 A 型/苯二氮卓受体复合物的 亚基结合的体外研究。溴唑仑对 亚基无选择性,对含有 1(K i = 2.8 nM)、 2(K i = 0.69 nM)和 5(K i = 0.62 nM)亚基的受体表现出可测量的结合亲和力。
内质网相关油酸去饱和酶 FAD2 是植物非光合作用组织中产生亚油酸的关键酶。在大豆中,已报道两种不同的 FAD2 同工酶:一种组成性表达基因,称为 FAD2-2 ,另一种种子特异性基因,称为 FAD2-1 。FAD2-1 的两种种子特异性同工酶,称为 FAD2-1A 和 FAD2-1B ,仅在 24 个氨基酸残基处不同(Tang 等人,2005 年),在确定种子储存油的脂肪酸组成方面起着关键作用(Heppard 等人,1996 年;Kinney,1997 年)。与 GmFAD2-1 成员不同,GmFAD2-2 成员表现出细胞质定位,这可能表明大豆中存在一种替代的脂肪酸去饱和酶途径,用于转化油酸含量,而不会显著改变传统的质体/内质网脂肪酸生产(Lakhssassi 等人,2021 年)。
a,原子,分子和化学键的结构。B组成,生物分子的结构和函数(碳水化合物,iipids,蛋白质,核酸和维生素)。c,稳定相互作用(van der waals。静电,氢化,基因键,疏水相互作用等)。d生物物理界面特性的原理)。化学(pH,bufter,反应l E.生物能,螺旋分解,氧化磷酸化,coupred反应,组转移,生物能传感器。 f'催化原理'酶和酶动力学,酶调节,enzylne催化的机制。 同工酶C'蛋白(Ramachandran图,二级结构,域,基序和褶皱)的构象。 H.核酸(Herix(A,B,Z),T-RNA,Micro-RNA),蛋白质和核酸的稳定性的核酸的同胞。 碳水化合物,脂质,碱酸核苷酸和维生素的 j'代谢物。 2。 细胞组织a)膜结构和功能(St ton E蛋白扩散,渗透,E.生物能,螺旋分解,氧化磷酸化,coupred反应,组转移,生物能传感器。f'催化原理'酶和酶动力学,酶调节,enzylne催化的机制。同工酶C'蛋白(Ramachandran图,二级结构,域,基序和褶皱)的构象。H.核酸(Herix(A,B,Z),T-RNA,Micro-RNA),蛋白质和核酸的稳定性的核酸的同胞。j'代谢物。2。细胞组织a)膜结构和功能(St ton E蛋白扩散,渗透,
D.基因编辑引入的性状的描述是除草剂抗性。通过使用碱基编辑器的特定碱基转变到O. sativa和T. aestivum的HPPD蛋白中产生的突变(Zong等,2018)。此外,由于对HPPD抑制除草剂的敏感性降低而获得了突变的HPPD酶。例如,获得了源自假单胞菌菌株A32的HPPD突变体G336W(Matringe等人。2005)。 活性位点的这种单个氨基酸变化导致对Isoxafutole的敏感性降低,并对HPPD酶活性产生中等影响。 另一个例子是从燕麦(avena sativa)获得的HPPD同工酶(称为AVHPPD-03),该酶显示出对中酮的耐受性(Kramer等人。 2014; Siehl等。 2014)。 该同工酶在N末端结构域中具有单个氨基酸缺失(A111)。 基因(PFHPPD W336和AVHPPD-03)已成功地用于开发转基因作物,例如大豆和棉花(Dreesen等。 2018)。 尤其是在大米中(Hawkes等,2019)报告说,大米HPPD基因中突变的组合V225i,A334R,R347E,L3666M,L3.66m,提高了对HPPD活性的降低,可以提高对除草剂甲氟酮和Isoxaflutole的耐受性。 靶向基因组编辑的基因是HPPD [],它编码为4-羟基苯基丙酮酸二加氧酶(EC 1.13.11.27)编码,该酶催化了酪氨酸分解代谢途径的第二步。 将4-羟基苯基丙酮酸(HPP)转换为同型,这是质喹酮和生育生物合成的前体。2005)。活性位点的这种单个氨基酸变化导致对Isoxafutole的敏感性降低,并对HPPD酶活性产生中等影响。另一个例子是从燕麦(avena sativa)获得的HPPD同工酶(称为AVHPPD-03),该酶显示出对中酮的耐受性(Kramer等人。2014; Siehl等。2014)。该同工酶在N末端结构域中具有单个氨基酸缺失(A111)。基因(PFHPPD W336和AVHPPD-03)已成功地用于开发转基因作物,例如大豆和棉花(Dreesen等。2018)。尤其是在大米中(Hawkes等,2019)报告说,大米HPPD基因中突变的组合V225i,A334R,R347E,L3666M,L3.66m,提高了对HPPD活性的降低,可以提高对除草剂甲氟酮和Isoxaflutole的耐受性。靶向基因组编辑的基因是HPPD [],它编码为4-羟基苯基丙酮酸二加氧酶(EC 1.13.11.27)编码,该酶催化了酪氨酸分解代谢途径的第二步。将4-羟基苯基丙酮酸(HPP)转换为同型,这是质喹酮和生育生物合成的前体。hppd是来自不同化学家族的除草剂的靶位部位,例如依氧唑(isoxaflutole和pyrasulfotole),吡唑酮(topramezone)和triketones(Mesotrione,Bicyclopyrone和tembotrione)(Lee等人)(Lee等人,1998年)。用这些除草剂治疗后,由于胡萝卜素合成的丧失,易感植物表现出漂白症状,并最终导致细胞膜的脂质过氧化。