[2] Giridharan,Sumitra K. Prof MK。“使用磁场定向控制 (FOC) 降低转矩脉动 - BLDCM 与 PMSM 的比较。” [3] Rafaq,Muhammad Saad、Will Midgley 和 Thomas Steffen。“永磁同步电机转矩脉动最小化技术的最新进展回顾。” IEEE 工业信息学学报 (2023)。 [4] Yashvi N. Parmar,“永磁同步电机磁场定向控制的硬件实现”,国际创造性研究思想杂志 (IJCRT) www.ijcrt.org,第 6 卷,第 2 期,2018 年 4 月,ISSN:2320-2882。 [5] Gupta,Ashish 和 Sanjiv Kumar。“用于 asd 的三相空间矢量 pwm 电压源逆变器分析。”国际新兴技术与先进工程杂志 2.10 (2012):163-168。[6] Yusivar, Feri 等人。“永磁同步电机磁场定向控制的实现。”2014 年国际电气工程与计算机科学会议 (ICEECS)。IEEE,2014 年。[7] Jacob, Jose 和 A. Chitra。“空间矢量调制多电平逆变器供电 PMSMdrive 的磁场定向控制。”Energy Procedia 117 (2017):966-973。[8] Faturrohman, Rifal、Nanang Ismail 和 Mufid Ridlo Effendi。“基于 DSP tms320f28027f 的无刷直流电机速度控制系统。”2022 年第 16 届国际电信系统、服务和应用会议 (TSSA)。 IEEE,2022 年。[9] K. Kolano,“PMSM 电机矢量控制的新方法”,载于 IEEE Access,第 11 卷,第 43882 43890 页,2023 年,doi:10.1109/ACCESS.2023.3272273。[10] P ELLEGRINO、G IANMARIO 等人,“P ERFORMANCE
1密苏里大学生物学系 - 美国密苏里州圣路易斯圣路易斯大学| 2密苏里大学惠特尼·R·哈里斯世界生态中心 - 美国密苏里州圣路易斯圣路易斯大学| 3美国密苏里州圣路易斯密苏里州植物园科学与保护部| 4美国加利福尼亚州阿卡塔的Cal Poly Humboldt林业,消防和范围管理部| 5约克大学生物学系,英国约克| 6美国阿拉斯加阿拉斯加费尔班克斯大学北极生物学研究所,美国阿拉斯加,美国| 7 H.J. Andrews实验森林,俄勒冈州立大学,美国俄勒冈州蓝河| 8美国波多黎各圣胡安市波多黎各大学环境科学系| 9美国加利福尼亚州圣塔芭芭拉分校国家生态分析与合成中心长期生态研究网络办公室,美国加利福尼亚州圣塔芭芭拉| 10赖斯大学,美国德克萨斯州休斯敦莱斯大学生物科学系|美国科罗拉多州科罗拉多州柯林斯堡的USDA森林服务局11落基山研究站| 12美国俄亥俄州俄亥俄州俄亥俄州大学环境与植物生物学系| 13美国新罕布什尔州汉诺威市达特茅斯学院的环境研究系| 14美国纽约州伊萨卡康奈尔大学自然资源与环境系| 15美国加利福尼亚州戴维斯分校的进化与生态系| 16美国加利福尼亚州卡梅尔谷加利福尼亚大学伯克利分校的Hastings保留地| 17美国加利福尼亚州伯克利分校的环境科学,政策与管理系| 18美国科罗拉多州柯林斯堡的柯林斯堡科学中心,美国科罗拉多州柯林斯堡1密苏里大学生物学系 - 美国密苏里州圣路易斯圣路易斯大学| 2密苏里大学惠特尼·R·哈里斯世界生态中心 - 美国密苏里州圣路易斯圣路易斯大学| 3美国密苏里州圣路易斯密苏里州植物园科学与保护部| 4美国加利福尼亚州阿卡塔的Cal Poly Humboldt林业,消防和范围管理部| 5约克大学生物学系,英国约克| 6美国阿拉斯加阿拉斯加费尔班克斯大学北极生物学研究所,美国阿拉斯加,美国| 7 H.J.Andrews实验森林,俄勒冈州立大学,美国俄勒冈州蓝河| 8美国波多黎各圣胡安市波多黎各大学环境科学系| 9美国加利福尼亚州圣塔芭芭拉分校国家生态分析与合成中心长期生态研究网络办公室,美国加利福尼亚州圣塔芭芭拉| 10赖斯大学,美国德克萨斯州休斯敦莱斯大学生物科学系|美国科罗拉多州科罗拉多州柯林斯堡的USDA森林服务局11落基山研究站| 12美国俄亥俄州俄亥俄州俄亥俄州大学环境与植物生物学系| 13美国新罕布什尔州汉诺威市达特茅斯学院的环境研究系| 14美国纽约州伊萨卡康奈尔大学自然资源与环境系| 15美国加利福尼亚州戴维斯分校的进化与生态系| 16美国加利福尼亚州卡梅尔谷加利福尼亚大学伯克利分校的Hastings保留地| 17美国加利福尼亚州伯克利分校的环境科学,政策与管理系| 18美国科罗拉多州柯林斯堡的柯林斯堡科学中心,美国科罗拉多州柯林斯堡Andrews实验森林,俄勒冈州立大学,美国俄勒冈州蓝河| 8美国波多黎各圣胡安市波多黎各大学环境科学系| 9美国加利福尼亚州圣塔芭芭拉分校国家生态分析与合成中心长期生态研究网络办公室,美国加利福尼亚州圣塔芭芭拉| 10赖斯大学,美国德克萨斯州休斯敦莱斯大学生物科学系|美国科罗拉多州科罗拉多州柯林斯堡的USDA森林服务局11落基山研究站| 12美国俄亥俄州俄亥俄州俄亥俄州大学环境与植物生物学系| 13美国新罕布什尔州汉诺威市达特茅斯学院的环境研究系| 14美国纽约州伊萨卡康奈尔大学自然资源与环境系| 15美国加利福尼亚州戴维斯分校的进化与生态系| 16美国加利福尼亚州卡梅尔谷加利福尼亚大学伯克利分校的Hastings保留地| 17美国加利福尼亚州伯克利分校的环境科学,政策与管理系| 18美国科罗拉多州柯林斯堡的柯林斯堡科学中心,美国科罗拉多州柯林斯堡
功能高性能操作误差放大器内部软启动/停止/停止/停止0.5%内部电压准确性,0.8 V电压参考OCP准确性,锁存前的四个重新输入时间“无损”差分电感器当前的“无损”差分电感电流•内部高精确的电流传感范围20 ns ocplifier示威范围•extive oscillative•extive oscillative•extive oscillative•extive 20 khz•100000 khz。内部门驱动器的非重叠时间5.0V至12 V操作支撑1.5 V至19 V VINV范围从0.8 V到3.3 V到3.3 V(使用12 V CC的5 V)通过OSC启用芯片通过电压锁定电压保护(OCP)固定量•保证的OCP THERENSUD保证•保证的OCP启动•热量••pressiated•pressiated•pressiated•pressiated•pressive•pressive•••pressiated••pressiated集成的MOSFET驱动程序内部R BST = 2.2集成的增强二极管•自动节省模式,以最大化光负载操作期间效率同步函数远程接地感应这是无PB- free设备*
心脏是一种将血液和氧气在您的身体周围泵送到所有重要器官的肌肉。它有四个腔室,顶部有两个(右侧和左心房),底部有两个(右心室和左心室)。心脏还具有一个电气系统,它通过心脏发出冲动(节拍),导致其收缩并在体内抽血。每个正常的心跳始于心脏的天然起搏器(中环或SA节点),位于右心房顶部。它穿过两个顶部腔室,并穿过上和下腔之间的小连接(室内或AV节点)。然后,它散布在底部腔室(心室),导致心脏收缩并通过右心室将血液泵入肺部,并通过左心室在体内含氧血液。
脑表达基因的进化速度明显慢于其他组织中表达基因的进化速度,这一现象可能是由于高级功能限制造成的。其中一个限制可能是神经元组合对信息的整合,从而增强环境适应性。本研究通过三种类型的同步探索了神经元中信息整合的生理机制:化学、电磁和量子。化学同步涉及多巴胺和乙酰胆碱等神经递质的弥散释放,导致传输延迟数毫秒。电磁同步包括动作电位、电间隙连接和偶联。电间隙连接使皮质 GABA 能网络内的快速同步成为可能,而偶联则使轴突束等结构能够通过细胞外电磁场同步,速度超过了化学过程的速度。据推测,量子同步涉及离子通道通过期间的离子相干性和髓鞘内光子的纠缠。与化学和电磁过程中的有限时间同步不同,量子纠缠提供瞬时非局部相干状态。神经元可能从较慢的化学扩散进化为快速的时间同步,离子通过皮质 GABAergic 网络内的间隙连接可能促进快速伽马波段同步和量子相干。这篇小综述汇编了有关这三种同步类型的文献,为解决神经元组装中结合问题的生理机制提供了新的见解。
OMB编号 0930-0222到期日期:06/30/xxxx公共负担声明:代理商不得执行或赞助商,并且不需要一个人回应,除非显示当前有效的OMB控制号码,否则信息的集合。 该项目的OMB控制号码为0930-0222。 该信息收集的公开报告负担估计每年平均每年18小时,包括审查说明的时间,搜索现有数据源,收集和维护所需的数据以及完成和审查信息的收集。 向SAMHSA报告清算官员,5600 Fishers Lane,Rockville,MD 20857发送有关此信息的负担估算或此信息收集的任何其他方面的评论,包括减轻此负担的建议。OMB编号0930-0222到期日期:06/30/xxxx公共负担声明:代理商不得执行或赞助商,并且不需要一个人回应,除非显示当前有效的OMB控制号码,否则信息的集合。该项目的OMB控制号码为0930-0222。该信息收集的公开报告负担估计每年平均每年18小时,包括审查说明的时间,搜索现有数据源,收集和维护所需的数据以及完成和审查信息的收集。向SAMHSA报告清算官员,5600 Fishers Lane,Rockville,MD 20857发送有关此信息的负担估算或此信息收集的任何其他方面的评论,包括减轻此负担的建议。
摘要 - 网络攻击数量不断增加,对数字基础设施构成了极大的威胁。定义和部署准确的对策是具有挑战性的,因为(1)随着时间的推移,威胁的种类及其可能的演变,以及(2)需要尽快执行它们,尤其是对于快速传播攻击。基于意图的网络(IBN)代表有前途的安全管理解决方案,尤其是通过对反应意图的规范,节省时间并避免使用易于错误的任务来减少攻击。然而,大多数当前的IBN解决方案都依赖于执行时间消耗操作的集中式建筑,这使得它们不适合及时部署对策,尤其是在快速传播攻击扩散大规模系统的情况下。作为在支持可伸缩性的同时缩短反应时间的解决方案,我们首先将快速的微服务技术(例如Unikernels)视为作为策略执行点(PEP)的安全函数的基板。第二,我们建议使这些PEP的机会主义同步至少部分但自主地反对以分散的方式对待持续的攻击。这种解决方案提出了与总体强制反应政策的一致性和性能相关的挑战。本文介绍了博士学位的早期阶段,概述了在IBN安全框架中使用微服务的opporitiants同步利用分散反应所需的具体挑战,局限性和研究。索引术语 - 分节性缓解,反应政策,IBN,微服务,机会主义同步
摘要:二维(2D)半导体二进制二进制对下一代电子和光子设备的非凡希望。尽管存在这种潜力,但在2D二分法中存在缺陷的存在导致载体的迁移率和光致发光(PL),而理论预测明显不足。尽管缺陷钝化提供了潜在的解决方案,但其影响并不一致。这是由于缺乏对2D材料表面化学的化学理解。In this work, we uncover new binding chemistry using a sequence-specific chemical passivation (SSCP) protocol based on 2-furanmethanothiol (FSH) and bis(trifluoromethane) sulfonimide lithium salt (Li-TFSI), which demonstrates a synchronized 100-fold enhancement in both carrier mobility and PL in WS 2 monolayers.我们提出了一种由超快瞬态吸收光谱(TA),硬X射线光电学光谱镜(HAXPES)和密度功能理论(DFT)钙化支持的中性和带电硫空位(SV)的原子水平协同缺陷钝化机制。我们的结果为2D WS 2建立了一个新的半导体质量基准,为开发可持续2D半导体技术铺平了道路。■简介
( 1 ) Fabriz S, Mendzheritskaya J, Stehle S: 高等教育中同步和异步在线教学设置对学生在新冠疫情期间学习体验的影响。Front Psychol. 12: 733554, 2021 ( 2 ) Sattler A, Dunn J, Albarran M 等:初级卫生保健系统中异步与同步筛查抑郁和自杀倾向:质量改进研究。JMIR Ment Health. 11: e50192, 2024
- 自然资源稀缺 - 可用土地较少,占全国总面积不到 30% - 人口密度高,每平方公里 516 人,仅韩国就有 5200 万人。 - 制造业占国民生产总值的比重较大,为 28.8%。 - 因此,研发是韩国工业生产的关键支撑