智能内容发现 我们的 AI 学习助手确保用户可以专注于学习和参与内容,而不是花时间搜索内容。 全面的内容选择 Quench AI 从各种平台获取视频内容,包括 YouTube 和我们的独家订阅库。 个性化专家指导 Quench AI 还允许用户与主题专家联系。 用户可以向他们最喜欢的专家预订辅导或指导课程,从而进一步增强他们的学习体验。
1. 稿件标题 1 触觉意象引起的事件相关去同步:EEG 研究 2 2. 缩写标题 3 触觉意象的 EEG 研究 4 3. 按出版文章中出现的顺序列出所有作者姓名和所属机构 5 6 7 Lev Yakovlev 1,2 , Nikolay Syrov 1,2 , Andrei Miroshnikov 2 , Mikhail Lebedev 3,4 , Alexander 8 Kaplan 1,2,5 9 10 1 Vladimir Zelman 神经生物学和脑康复中心,Skolkovo 科学技术研究所 11 ,俄罗斯莫斯科 12 13 2 波罗的海神经技术和人工智能中心,Immanuel Kant Baltic Federal 14 大学,加里宁格勒,俄罗斯 15 16 3 莫斯科国立罗蒙诺索夫大学力学与数学学院, 17 俄罗斯 18 19 4 俄罗斯科学院谢切诺夫进化生理学和生物化学研究所,俄罗斯圣彼得堡 20 21 22 5 人类和动物神经生理学和神经计算机接口实验室 23 莫斯科国立大学生物学院生理学系,俄罗斯莫斯科 24 25 26 4. 作者贡献: 27
联系人 Mahendra Patel (PJM)、RAPIR 主席 Sandy Aivaliotis (Nexans) Eric Allen (NERC) Dave Bakken (华盛顿州立大学) Lisa Beard (广达科技) Vivek Bhaman (电力集团) Navin Bhatt (AEP) Terry Bilke (中西部 ISO) Vikram Budhraja (EPG) Tom Bowe (PJM) Ritchie Carroll (电网保护联盟) Jeff Dagle (太平洋西北实验室) Scott Dahman (PowerWorld) Jay Giri (Areva T&D) Dave Hilt (NERC) Sam Holeman (杜克大学) John Hauer (太平洋西北实验室) Zhenyu Huang (太平洋西北实验室) Stan Johnson (NERC) Tony Johnson (SCE) Larry Kezele (NERC) Jim Kleitsch (ATC) Dmitry Kosterev (BPA) Mark Laufenberg (PowerWorld) Elizabeth Merlucci (NERC) Paul Myrda (EPRI) Philip Overholt (US DOE) Russell Robertson (电网保护联盟) Ron Stelmak (The Valley Group) John Sullivan (Ameren) Alison Silverstein (NASPI 项目经理) Dan Trudnowski (Montana Tech) Ebrahim Vaahedi (BCTC) Marianna Vaiman (VR Energy) Lee Wang (Grid Sentinel) Don Watkins (BPA) Pei Zhang (EPRI)
– 近期物理学研究最令人着迷的方面之一是人们熟悉的光学定律逐渐扩展到极高频的 X 射线,直到现在,光领域中几乎没有一种现象在 X 射线领域找不到平行。反射、折射、漫散射、偏振、衍射、发射和吸收光谱、光电效应,光的所有基本特性都被发现也是 X 射线的特性……
伽马波段 (40 Hz) 活动对于感觉和认知处理过程中皮质间传输和跨神经网络信息整合至关重要。精神分裂症患者在响应 40 Hz 的听觉刺激时,支持同步伽马波段振荡的能力选择性降低。尽管这种 40 Hz 听觉稳态反应 (ASSR) 被广泛用作神经精神疾病治疗开发的转化脑电图生物标志物,但 ASSR 背后的时空动态尚未得到充分表征。在本研究中,应用了一种新颖的 Granger 因果关系分析来评估精神分裂症患者 (n = 426) 和健康对照受试者 (n = 293) 在响应 40 Hz 稳态刺激时跨皮质源的伽马振荡传播。两组均显示多个 ASSR 源相互作用,这些相互作用广泛分布于大脑各个区域。精神分裂症患者表现出明显的、层次化的连接异常。在反应开始间隔内,患者表现出从下额回到颞上回的连接异常增加,随后从颞上回到中扣带回的连接减少。在 ASSR 反应的后期(300-500 毫秒),患者表现出从颞上回到中额回的连接显著增加,随后从左上额回到右上额回和中额回的连接减少。这些发现既突出了健康受试者对简单伽马频率刺激的反应中分布式多个源的协调,也突出了
α 波段活动是一种神经特征,长期以来人们推测它与使神经处理偏向于所关注的信息有关(参见 Van Diepen 等人,2019 年)。许多研究提出 α 侧化,即一个半球的 α 波段功率同时下降而另一个半球的 α 波段功率增加,是视觉空间注意力转移的神经标志。在最近的研究中,Bagherzadeh 等人 (2019) 研究了 α 波段调节对视觉空间注意力部署的潜在因果作用。在一项神经反馈任务中,参与者学会了上调顶叶 α 波段幅度侧化,同时测量了注意力转移的标志。至关重要的是,左侧和右侧顶叶 MEG 传感器的 α 侧化增强有利于在方向匹配样本任务中取得好成绩,因为它增加了要记忆的刺激的对比度。核心问题是上调的 alpha 侧化是否会导致相应的视觉空间注意转移。通过不同的测量方法,提供了这种转移的证据:(1)对于神经反馈任务,作者报告了与半球对侧的探测相关诱发反应增强,而 alpha 被下调。在神经反馈任务中,(2)alpha 波段功率和(3)反应时间仍然描绘了后续波斯纳范式中性试验的侧化。最后,(4)凝视方向转移到半球对侧,在自由观看任务中显示 alpha 降低。这些测量使作者得出结论,神经反馈期间 alpha 侧化的增加导致了空间注意的转移(见图 1A)。但是,声称 alpha 侧化导致注意力反向转移,即部署隐蔽空间注意以增加 alpha 侧化的策略,必须排除。在我们看来,作者的论证思路存在一些缺陷,数据确实提供了一些证据,表明受试者使用空间注意力(通过关注中枢刺激的侧化方面)来改变他们的 alpha 侧化(图 1B)。作者表示,目前尚不清楚参与者使用了哪些策略来侧化 alpha 幅度,并提出转移注意力本身对于该任务来说并不是必需的,因为它只涉及一个中枢呈现的刺激,因此参与者依赖于偶然反馈来学习改变 alpha 侧化。尽管如此,隐性转移注意力代表了一种有效的策略,可以产生可靠的可测量 alpha 波段活动调节,这种调节通常在 BCI 中得到利用(Jensen 等人,2011;Treder 等人,2011)。为了控制受试者确实避免使用与空间注意相关的策略,作者比较了微扫视的方向作为隐性空间注意的标志
在听觉感知过程中,神经振荡已知会与声学动态同步,但它们在听觉信息处理中的作用仍不清楚。作为一种可以通过声学参数化的复杂时间结构,音乐特别适合解决这个问题。在一项针对人类参与者的行为和脑电图联合实验中,我们研究了刺激的时间(声学动态)和非时间(旋律频谱复杂性)维度对神经同步的相对贡献,神经同步是一种刺激-大脑耦合现象,在这里操作上定义为声学和神经动态之间的时间相干性。我们首先强调低频神经振荡会稳健地与复杂的声学时间调制同步,这强调了这种耦合机制的细粒度性质。我们还揭示了增强音高、和声和音高变化方面的旋律频谱复杂性会增加神经同步。重要的是,这种操作增强了 theta(5 Hz)范围内的活动,这是一种与旋律音符速率无关的频率选择性效应,可能反映了所涉及的神经过程的内部时间限制。此外,虽然情绪唤醒评级和神经同步都受到频谱复杂性的正向调节,但未观察到唤醒和神经同步之间的直接关系。总体而言,这些结果表明,音乐的神经同步对听觉信息的频谱内容很敏感,并指示了听觉水平的处理,这应该与高阶情绪处理阶段区分开来。
加州RPS法案要求到2030年将可再生能源在电力销售中的比例提高到60%。然而,天然气发电量无法满足夏季紧张的电力需求,导致大规模停电。
婴儿刺激会在人类成年人中引起广泛的神经和行为反应,如此大规模的资源分配证明了原始依恋的进化意义。在这里,我们检查了依恋提醒是否也会触发跨脑一致性并产生更大的神经一致性,如受试者间相关性所示。在催产素/安慰剂给药设计中,人类母亲被拍摄两次,刺激包括四个标准的陌生母亲和婴儿的生态视频:两个婴儿/母亲独自一人(独自一人)和两个母亲 - 婴儿二元环境(社交)。理论驱动的分析测量了父母照顾网络(PCN)预注册节点的跨脑同步性,该网络将支撑哺乳动物母性的皮层下结构与与模拟、心理化和情绪调节有关的皮层区域整合在一起,数据驱动的分析使用全脑分区评估全脑一致性。结果表明,PCN 和神经轴存在广泛的跨脑同步,从初级感觉/躯体感觉区域到岛叶扣带区,再到颞叶和前额叶皮质。社交背景产生了明显更多的跨脑一致性,PCN 纹状体、海马旁回、颞上沟、ACC 和 PFC 仅在母婴社交线索下显示跨脑同步。母婴社交同步的即时波动,从低同步性发作到紧密协调的积极发作,都通过预先注册的 ACC 中的跨脑一致性在线跟踪。研究结果表明,社会依恋刺激代表着进化过程中显著的普遍线索,不需要口头叙述,能够引发大量的大脑间一致性,并表明母婴关系是人类文明的核心标志,可能起到将大脑粘合成统一的体验并将人类束缚在社会群体中的作用。
该项目是全球首个采用 ABB 高惯性 SC 配置的项目。它将 67 MVAr SC 与 40 吨飞轮相结合,将瞬时可用惯性乘以 3.5 倍。这种方法将中型 SC 与飞轮相结合,其主要优势在于,与提供同步电容器安装所需的全部惯性相比,系统损耗要低得多。将两个中型 SC 耦合在一起还可以提供高水平的冗余、更大的惯性和更好的可控性。