摘要 在生态环境中理解和预测他人的行为是社会神经科学的一个重要研究目标。在这里,我们部署了一种移动脑体成像 (MoBI) 方法来分析现场爵士乐表演期间专业音乐家之间的脑间交流。具体来说,在一场分为三部分的 45 分钟的爵士乐表演中,我们进行了双谱分析以评估来自三位专业音乐家的头皮脑电图 (EEG) 信号的同步性,在此期间,每五分钟就会有一位新音乐家加入。我们估算了所有音乐家二元组、电极组合和五个频带的双谱。结果显示,当更多音乐家一起表演以及他们同步演奏乐句时,β 和伽马频带 (13-50 Hz) 中的双谱更高。在确定的同步表演事件前约三秒发现了正双谱幅度变化,表明准备性皮质活动可预测协同行为动作。此外,随着音乐家的表演越来越多,电极区域之间的同步脑电图活动也越来越多,其中颞叶、顶叶和枕叶区域之间的脑内同步最为频繁。音乐家大脑活动同步性的提高反映了音乐即兴演奏任务中共享的多感官处理和动作意图。
言语互动和模仿对于幼儿的语言学习和发展至关重要。然而,目前尚不清楚母子二元组如何在轮流言语互动中同步皮质层面的振荡神经活动。我们的研究调查了母子对在轮流言语模仿范式中的脑间同步。使用双 MEG(脑磁图)装置同时测量互动母子对的大脑活动。在社交互动和非互动任务(被动聆听纯音)之间比较了人际神经同步。与非互动条件相比,在 θ 和 alpha 波段,社交互动期间的脑间网络同步性有所提高。在下额回的右角回、右三角回和左岛叶部分观察到了增强的人际大脑同步性。此外,这些顶叶和额叶区域似乎是表现出大量脑间连接的皮质中枢。这些皮质区域可以作为言语社交交流中互动成分的神经标记。本研究首次使用双 MEG 装置研究母子在言语社交互动过程中的脑间神经同步。我们的研究结果加深了我们对母子二人组言语互动过程中轮流发言的理解,并表明社交“门控”在语言学习中发挥着作用。
单脑神经成像研究表明,人类合作与额叶和颞顶叶区域的神经活动有关。然而,单脑研究是否能为现实生活中的合作提供信息仍不清楚,因为在现实生活中,人们会进行动态互动。这种动态互动已成为脑间研究的焦点。在这方面,一种有利的技术是功能性近红外光谱 (fNIRS),因为它比 EEG 或 fMRI 等更传统的技术更不容易受到运动伪影的影响。我们基于 13 项研究(涉及 890 名参与者),对 fNIRS 合作超扫描进行了系统评价和首次定量荟萃分析。总体而言,荟萃分析揭示了人们合作时存在统计学上显着的脑间同步性的证据,额叶和颞顶叶区域的整体效应大小都很大。所有 13 项研究都观察到前额叶皮层 (PFC) 中存在显着的脑间同步性,这表明该区域与合作行为特别相关。由于相关研究使用了不同的合作任务,因此这些发现的一致性不太可能归因于与任务相关的激活。总之,本研究结果支持了额叶和颞顶叶区域在人际合作中的大脑间同步的重要性。此外,本文强调了元分析作为辨别大脑间动态模式的工具的实用性。关键词:大脑间同步、人际神经对齐、超扫描、合作、fNIRS
误区 1:必须集思广益才能想出好点子 5 斯坦福大学的研究发现,在协作方面,我们中的许多人都沉迷于同步性——每个人都必须在同一时间聚集在一个地方,共同解决问题或想出成功的想法。但是,同侪压力动态的影响以及内向者和外向者之间的对比意味着面对面的集思广益并不总能产生最佳效果。相反,研究人员发现,在产生想法时,使用允许人们在自己的时间思考并分享想法而不会获得即时反馈(无论是正面还是负面)的工具可以提高想法的质量和数量。
特征;生态和意义; Thallus组织;生殖;生命周期参考同步性,根瘤菌。生命周期和分类,参考糖果,曲霉,青霉,替代品和镰刀菌,一般特征(无性和性效果体);异体病和寄生虫;一般特征;生态;生命周期和分类,参考小麦帕奇尼亚(Puccinia),乌斯蒂利亚(Ustilago)(症状),agaricus;一般特征;粘液模具的状态,水果体的类型。一般特征;生态;生命周期和分类,参考白albugo。单位V:应用真菌学
目标 1.1:FDA 和 SLTT 监管和实验室合作伙伴协作确定培训需求并不断改进监管和实验室培训。目标 1.2:FDA、SLTT 监管和实验室合作伙伴、高等教育机构和协会共同负责培训内容的开发。目标 1.3:高效开发新培训并修订现有培训,以缩短上市时间并确保培训与当前需求保持相关性和同步性。目标 1.4:制定和维护 IFSS 食品保护专业人员国家课程标准和食品和饲料实验室国家课程标准 (NCS)。
越来越多的证据表明,长期运动相关的头部撞击会损害大脑功能整合以及大脑结构和功能。需要有证据表明反复头部撞击的频率和强度与大脑网络功能紊乱之间存在明显的反比关系,以加强因果关系的论据。为了寻找这种关系,我们使用了戴在帽子上的惯性传感器来测量十八名大学水球运动员在一个赛季的比赛中受到的头部撞击的频率和强度。在赛季前后,使用计算机化的抑制控制认知测试和静息脑电图对参与者进行评估。头部撞击暴露越大,慢波(delta、theta)振荡形成的功能网络中的相位同步性 [ r (16) > 0.626,p < 0.03 校正后]、全局效率 [ r (16) > 0.601,p < 0.04 校正后] 和平均聚类系数 [ r (16) > 0.625,p < 0.03 校正后] 就越高。头部撞击暴露与抑制控制任务中的表现变化无关。但是,撞击暴露最严重的人表现出静息态连接变化与赛季后任务表现分离之间的关联 [ r (16) = 0.481,p = 0.043],这也可以归因于慢波同步性的提高 [ F (4, 135) = 113.546,p < 0.001]。总的来说,我们的结果表明,遭受最大头部撞击的运动员整个大脑功能连接会发生变化,这与信息处理和抑制控制的改变有关。
图 1 脑间网络的整体效应可以分解为特定种子区域的节点效应。该图显示了陌生人与儿童互动与母子互动、基线与竞争以及基线与合作的整体和节点密度效应。节点密度由四个 NMF 成分的系数编码。左图:绘制了群体效应的边际后验分布及其平均值、90% CI(粗黑线)和 99% CI(细灰线)。CI 的宽度表示与估计参数相关的不确定性。90% CI 不包括零的参数(红线)被解释为存在影响的证据。整体结果显示出强烈的伴侣效应,与陌生人与儿童二元组相比,母子二元组的同步性有所提高,以及竞争效应和一些合作效应的证据,与基线条件相比,两种任务条件的同步性更高。节点结果证实了这些整体结果,但提供了更多的拓扑细节。具体而言,伴侣效应相当普遍(在成分 3 和 4 以及基线条件下的成分 2 中),而竞争和合作效应主要局限于左侧和右侧前额叶大脑区域(成分 1 和 4)。右图:五张 catplots 显示了在基线、合作和竞争条件下,母子和陌生人-儿童二元组中后部全局和节点密度值的变化情况。底部:热图可视化了 NMF 产生的基础矩阵,显示了儿童(C)和成人伴侣(P)的每个 fNIRS 通道(x 轴)对相应成分(y 轴)的贡献。在脑模型上可视化了儿童和成人伴侣的 fNIRS 通道,这些通道对每个成分的贡献最大,就其节点密度而言,权重高于第 80 个百分位数(最小值 = 0,最大值 = 1)
ADHD 的特点是无法完成认知任务,而这些任务需要患者在较长时间内自我调节注意力。因此,研究持续注意力和抑制之间的相互作用十分重要,尤其是通过潜在的神经过程,如注意力(背侧或腹侧)网络对感知处理的调节( 8 )。高时间分辨率、脑磁图和脑电图 (M/EEG) 研究对于通过引出注意力机制来理解 ADHD 的神经生理学至关重要。例如,长期以来人们一直认为皮质振荡(即神经活动的节律模式)在大脑不同区域之间的交流中发挥作用( 9 ),而通过测量事件相关同步性,已证明 ADHD 患者的皮质振荡会发生改变( 10 )。