摘要:尽管分离的微电网的部署和整合正在获得广泛的支持,但仍在研究高透明源水平下微电网频率的调节。在众多有关频率稳定性的研究中,一种关键方法是基于将额外的循环与虚拟惯性控制整合在一起,旨在模仿传统同步机的行为。在这项调查中,回顾了与岛状微电网中虚拟惯性控制方法有关的最新作品。基于对过去十年来最近论文的上下文分析,我们试图更好地理解为什么某些控制方法适合不同的情况,当前开放的理论和数值挑战,以及哪些控制策略将在接下来的几年中占主导地位。一些审查的方法是系数方法,基于H-实现的方法,基于增强学习的方法,基于实用的方法的方法,基于模糊的基于模糊的方法和模型预测的控制器。
欧洲电力系统最近发生的事件表明,随着基于逆变器的发电在电力系统中的普及,人们对电力系统安全性的担忧以及区域间振荡阻尼较差的风险。本文通过对三个简化的小信号电力系统模型进行特征值分析,对带或不带电力系统稳定器 (PSS) 的同步补偿器 (SC) 对局部和区域间振荡阻尼的贡献进行了基础研究:(1)连接到无限大母线的 SC;表明同步补偿器的机电振荡不会受到 PSS 的影响,(2)与发电机并联的 SC 连接到无限大母线;证实虽然可以通过在同步补偿器中安装 PSS 来抑制两台同步机对无限大电网的联合机电振荡,但 PSS 最有效的位置是在同步发电机中,(3)存在基于逆变器的发电时的 SC;表明,在配备 PSS 的情况下,SC 对区域间振荡的阻尼影响会得到改善。
摘要 - 能源存储是一种新兴技术,可以使基于可再生能源的分布生成的过渡,减少峰值功率需求以及生产和使用之间的时差。可以在网格级别(集中)或用户级别(分布式)上实施能量存储。化学蝙蝠代表了表现和成熟度的存储系统的事实上;但是,电池具有相当大的环境足迹,并使用珍贵的原材料。机械存储技术可以代替化学电池的可行替代方法,因为它们对环境和原材料的影响减少了。本文介绍了电动机/发电机的设计,用于家庭级别的木制储能。通过有限元分析(FEA)比较了三台参考机器:传统的铁核表面永久磁铁(SPM)同步机,一种同步降低机器(Synchrel)和无铁SPM合成机器。仿真表明,由于其高效率,高排放持续时间和低损失,无铁机器的分布储能良好。设计和制造了无铁的机器。实验确认模拟结果。
近年来,人们越来越重视利用能源储存来增强电网抵御破坏性事件的能力。虽然可再生能源供应不断扩大,但基于重力的解决方案(如抽水蓄能)在商业领域仍然占主导地位。然而,它们的地理限制限制了可用性、可扩展性,并增加了太阳能和风能共置的成本。另一种方法是重新利用位于现有电网基础设施附近的闲置油气井,这是一种有前途且经济高效的解决方案。本文讨论了在 300 米井中与内部永磁同步机耦合的再生驱动系统的优化和控制,该井的重量为 100 牛顿。该研究采用动态 MATLAB/Simulink 模型来模拟电力传动系统在储存和放电操作期间的运行。结果表明,仅电气系统的初始往返效率就为 85.9%,并确定了最大化效率的关键因素。机电传动系统的优化运行和控制具有巨大的潜力,可以最大限度地降低存储的平准化成本,同时最大限度地提高效率和创收。
附图列表 图 (1-1): - 本项目的风能转换系统框图 .............................................................................. 10 图 (3-2):- 水平轴和垂直轴风力涡轮机视图 .............................................................................. 16 图 (3-3): - 上风向三叶片 HAWT 和下风向两叶片 HAWT 示意图 17 图 (3-4): - 直接驱动和齿轮驱动风力涡轮机的内部结构 ............................................................. 18 图 (3-5):- 水平轴风力涡轮机的配置 ............................................................................................. 19 图 (3-6): - 垂直轴风力涡轮机所需的零件和组件 ............................................................................. 20 图 (3-7): - Simulink 中风力涡轮机模型的参数设置 ............................................................................. 22 图 (3-8): - 具有设置涡轮机参数的涡轮机功率特性 ............................................................................. 22 图 (3-9): - 鼠笼感应发电机剖面图 (Wenping Cao,2012 年 3 月) ............................................................................................................................................. 24 图(3-10): - 双馈感应发电机剖面图 (Wenping Cao, March 2012) ............................................................................................................................................. 25 图 (3-11): - 同步发电机剖面图 ............................................................................................................................. 27 图 (3-12): - 永磁同步发电机剖面图 (Wenping Cao, March 2012) ............................................................................................................................. 28 图 (3-13): - Matlab 中永磁同步机的配置 (用于项目) ............................................................................................................................. 31 图 (3-14): - Matlab 中永磁同步机的参数 (用于项目) ............................................................................................................. 32 图 (4-15): - 风能转换系统的电力电子部分框图 ............................................................................................................................. 34 图 (4-16): - 三相桥式整流器的电路图 (Rashid, 2014) ............................................................................................. 35 图 (4-17): - 输入波形和三相桥式整流器的输出电压 (Rashid, 2014) ...................................................................................................................................... 36 图 (4-18):- 降压转换器的电路图 (Rashid, 2014) ...................................................................... 39 图 (4-19): - 模式 1 的降压转换器等效电路图 (Rashid, 2014) ............................................. 40 图 (4-20):- 模式 2 操作的降压转换器等效电路图 (Rashid, 2014) ............................................................................................................................................... 40 图 (4-21):- 电感电流连续流动时降压转换器的输入和输出电压和电流的波形 ............................................................................................. 41 图 (4-22): - 恒压控制图像 ............................................................................................................. 45 图 (4-23): - 恒流控制图像 ............................................................................................................. 46 图 (4-24):- 风能转换系统的电池参数设置 ............................................................................. 47 图 (4-25):- 电池的标称电流放电特性 ............................................................................................. 48 图 (5-26):- 不同桨距角值的风力涡轮机特性 ............................................................................. 50 图 (5-27):- 相间电感相对于转子电角度的变化 ............................................................................. 51 图 (5-28): - 降压转换器的等效电路 ............................................................................................. 52 图 (5-29): - 充电控制示意图 (Her-Terng Yau, 2012) ........................ 54 图(5-30): - Buck 转换器等效电路 .............................................................................. 55
可再生能源和微电网的指数升高带来了通过使用储能系统来确保低渗透网格中频率稳定性的挑战。本文回顾了交流电源系统的频率响应,突出了其不同的时间尺度和控制动作。此外,它指出了依靠同步机和低惯性系统的高惯性互连系统之间的主要区别,这些系统具有转换器相互交流的高渗透率。基于这些概念并采用一组假设,它得出了代数方程,以评估提供惯性和主要控制的能源存储系统。方程与储能技术无关,对系统非线性的鲁棒性,并依赖于通常由系统运营商,行业标准或网络代码定义的参数。使用这些结果,作者提供了一个逐步的过程,以大小转换器交换器交换器混合储能系统的主要组件。最后,北海的风能石油和天然气平台的案例研究以数值示例证明了建议的方法1)可以在实际问题中应用于实际问题和2)2)允许系统设计人员根据提供的频率控制类型来利用不同的技术并为每个存储设备和转换器设置特定要求。
摘要:目前,可再生能源 (RES) 在电网中的渗透率显著提高,尤其是在微电网中。用 RES 取代传统同步机可显著降低整个系统的惯性。这会对不确定情况下的微电网动态产生负面影响,降低微电网频率稳定性,特别是在孤岛运行模式下。因此,本研究旨在利用虚拟惯性频率控制概念增强孤岛微电网频率弹性。此外,虚拟惯性控制模型采用了最优模型预测控制 (MPC)。MPC 的优化设计是使用一种优化算法,即非洲秃鹫优化算法 (AVOA) 实现的。为了证明所提出的控制器的有效性,将基于 AVOA 的 MPC 与使用各种优化技术进行优化设计的传统比例积分 (PI) 控制器进行了比较。利用 RES 的实际数据,并应用随机负载功率模式来实现实际的模拟结果。此外,微电网范例包含电池储能 (BES) 单元,用于增强孤岛微电网的暂态稳定性。模拟结果表明,基于 AVOA 的 MPC 在提高微电网频率弹性方面是有效的。此外,结果确保了 BES 在时域模拟中改善暂态响应的作用。模拟结果是使用 MATLAB 软件获得的。
电能在航空网络中发挥着越来越重要的作用。这导致电力电子技术的强势崛起,它成为获得高性能、可靠和有竞争力的系统的关键技术领域。本论文是基于通用和模块化转换元件的电能处理架构辅助设计方法的一部分。在“更电气化”飞机网络框架内建立了静态转换器应用的普查,以划定转换模块的结构周长。这些元素的模块化为电源分段和冗余开辟了道路,建议通过实施容错转换器来利用这些功能,以提高系统的运行可用性。从这个角度来看,通过分析和基于电动静液飞行控制执行器多物理模型的仿真,对几种逆变器拓扑进行了比较。作为实验研究的一部分,所生产的转换模块特别包括用于实现可重构逆变器的适当功能,专用于永磁同步机的电源。该逆变器具有共享冗余,形式为连接到机器中性的第四个开关单元。最后,为了扩展该通用模块的范围,提出了不同的 AC-DC 转换拓扑来优化能源管理,与传统解决方案相比。通过对电气和热标准的定量比较,我们可以考虑每种结构的优点。
DPESS 正在就 GPS 进行协商,而当时 NSP 和 AEMO 的负责团队尚未就反映电网形成逆变器性能的 GPS 达成一致。我们对此的方法是尽早提出与最低接入标准的偏差,包括措辞,以捕捉被认为是适当的工厂响应。这主要与故障响应有关,在故障响应中,没有必要指定异步机器最低接入标准所要求的阈值以及上升和稳定时间。我们花了数月时间才就相关条款(第 5.2.5.5 条)的措辞达成一致,这可能会导致项目延误。这是因为需要协商一个可接受的 GPS 条款,该条款不符合当前定义的异步电网形成工厂的性能标准,因为根据设计,电网形成逆变器的响应更类似于同步机器。由于电网形成逆变器的经验有限,需要时间来证明,虽然理论上可以调整逆变器以满足现有的异步发电机标准,但从网络角度来看,这并不是最好的结果,因为使用这些设置,电压扰动会更大,并且在发生故障后需要更长时间才能恢复稳定状态。最后的 GPS 条款描述了与同步机类似的性能,这被认为比异步标准更高,并适应了电网形成响应特性。
fr频率响应。响应量度。通过频率响应义务(PER NERC BAL-003)FSETL沉降频率(网络中产生的发电损失)基于IBR逆变器的资源(包括风,太阳能或光伏,BESS,BESS)IFRO互连频率响应义务(由NERC BAL-003)通过频率事件(A.K.A UFR)(A.K.A UFR)提供(A.K.A UFR)(a.k.a ufr)eRC(a.k.a ufr)er cot er cot of cot er cot soreion recourcation(频率继电器。NP网络协议; ERCOT的一组可靠性要求PFR初级频率响应P REF Power参考 - 资源向网格传递的MW中的主动功率量。RRS响应储备服务SM同步机SMIB单机器无限总线。用于控制和改进的简单建模设置。SOC收费状态STP“南德克萨斯州项目” - 南德克萨斯核电站,在该项目的背景下,相当于2805MW UFL“频率负载脱落” - 由于网格干扰UFR,能源消费者将逃脱的点(A.K.A.lr)通过使用频率继电器提供的负载资源提供的ERCOT响应式储备服务(RRS)的一部分。v Ref Ref电压参考 - 电网操作员或工厂控制器设置的电压命令,以维持某个电压级别