应用 ................................................................ 4 输出范围和设计原理 .............................................. 5 恒速电机 .............................................................. 6 变速电机 .............................................................. 7 构造和安装 .............................................................. 8 冷却和保护 .............................................................. 10 绕组和定子 .............................................................. 12 绝缘 ...................................................................... 14 转子 ...................................................................... 16 励磁系统 ............................................................. 18 轴承 ...................................................................... 20 配件 ...................................................................... 20 工厂验收测试 ............................................................. 22 可靠的合作伙伴 ............................................................. 23 参考资料 ...................................................................... 24 适用于各种应用的电动机和发电机 ................................ 26 互联网上的 ABB ............................................................. 27
本文档介绍了一种使用 TMS320C24x 控制永磁同步电机的解决方案。这种新型 DSP 系列能够以经济高效的方式设计无刷电机智能控制器,从而实现增强的操作,包括更少的系统组件、更低的系统成本和更高的性能。所提出的控制方法依赖于磁场定向控制 (F.O.C.)。该算法可在各种速度下保持效率,并通过直接从转子坐标控制磁通量来考虑瞬态相位的扭矩变化。本报告介绍了不同的增强算法。所提出的解决方案包括抑制相电流传感器的方法和使用滑模观测器进行无速度传感器控制。
本论文涉及汽车应用中配备永磁同步电机 (PMSM) 的电力驱动系统的控制系统结构的设计和分析。本文考虑了无传感器控制,即没有机械转子位置传感器的矢量控制,并彻底分析了锁相环类型的速度和位置估算器。本文提出了一些修改方法,以允许在整个速度范围内运行,并提高估算器处理较大速度估算误差的能力。结果表明,转子凸极效应会影响估算器的动态特性,在某些参数选择和操作条件下,估算器的动态特性可能会变得不稳定。因此,本文推导出简单的参数选择规则,以保证稳定性并简化实施。对于转子凸极效应较小或可忽略的 PMSM,本文还考虑了一种仅从反电动势中提取位置信息的估算器。该估算器基于众所周知的“电压模型”,并提出了一些修改,以通过保证启动时的同步并允许稳定的旋转反转来提高估算器在低速范围内的性能。通过控制实现损耗最小化的理论应用于用于混合动力电动汽车推进的 PMSM 驱动器。通过更强的磁场削弱,可以降低基本铁芯损耗,但代价是增加电阻损耗。研究表明,然而
未经明确授权,禁止复制本文件、将其提供给他人以及使用或传播其内容。违者将承担赔偿责任。在授予专利或注册实用新型或设计(DIN 34-1)的情况下,保留所有权利。
[2] Giridharan,Sumitra K. Prof MK。“使用磁场定向控制 (FOC) 降低转矩脉动 - BLDCM 与 PMSM 的比较。” [3] Rafaq,Muhammad Saad、Will Midgley 和 Thomas Steffen。“永磁同步电机转矩脉动最小化技术的最新进展回顾。” IEEE 工业信息学学报 (2023)。 [4] Yashvi N. Parmar,“永磁同步电机磁场定向控制的硬件实现”,国际创造性研究思想杂志 (IJCRT) www.ijcrt.org,第 6 卷,第 2 期,2018 年 4 月,ISSN:2320-2882。 [5] Gupta,Ashish 和 Sanjiv Kumar。“用于 asd 的三相空间矢量 pwm 电压源逆变器分析。”国际新兴技术与先进工程杂志 2.10 (2012):163-168。[6] Yusivar, Feri 等人。“永磁同步电机磁场定向控制的实现。”2014 年国际电气工程与计算机科学会议 (ICEECS)。IEEE,2014 年。[7] Jacob, Jose 和 A. Chitra。“空间矢量调制多电平逆变器供电 PMSMdrive 的磁场定向控制。”Energy Procedia 117 (2017):966-973。[8] Faturrohman, Rifal、Nanang Ismail 和 Mufid Ridlo Effendi。“基于 DSP tms320f28027f 的无刷直流电机速度控制系统。”2022 年第 16 届国际电信系统、服务和应用会议 (TSSA)。 IEEE,2022 年。[9] K. Kolano,“PMSM 电机矢量控制的新方法”,载于 IEEE Access,第 11 卷,第 43882 43890 页,2023 年,doi:10.1109/ACCESS.2023.3272273。[10] P ELLEGRINO、G IANMARIO 等人,“P ERFORMANCE
摘要:伺服控制在位置跟随方式下要求具有快速的跟随性能和较高的稳态精度,特殊环境应用的伺服对电机的性能和可靠性要求更为严格。伺服系统的发展经历了最初的电液伺服,采用直流有刷电机,其速度、可靠性和使用寿命都比较有限。如今的交流伺服系统主要是交流异步或永磁同步电机,伺服系统的发展越来越朝着交流化、永磁化、智能化、集成化、小型化、网络化、模块化的方向发展。本文主要研究永磁同步交流电机的伺服控制。永磁同步交流电机分为永磁同步电机和永磁无刷直流电机。研究发现基于永磁同步电机的伺服控制在跟随性能和稳态精度上优于基于永磁无刷直流电机的伺服控制。
直流电机:类型、发电机的 EMF 方程和电动机的转矩方程、直流电机的特性和应用;三相感应电机:类型、运行原理、滑差转矩特性、应用;单相感应电机:运行原理和启动方法介绍、应用。三相同步电机:交流发电机和同步电机的运行原理及其应用。
直流电机 ................................................................................................................................ 16 直流无刷电机 .............................................................................................................................. 70 Motomate ................................................................................................................................ 86 同步电机 ................................................................................................................................ 94 步进电机 ................................................................................................................................ 138 风扇 ...................................................................................................................................... 178
摘要 — 随着全球电力系统继续实现电力电子转换器接口可再生能源的更高瞬时渗透率,这些电力系统的稳定性受到挑战,因为同步电机被移除,而传统上稳定性是从同步电机获得的。尽管这些稳定性挑战的技术解决方案即将出现,例如使用电网形成逆变器,但它们尚未广泛应用于大型电力系统,这对当今实现这些高瞬时渗透率的电力系统带来了运营挑战。使用现有技术的一个潜在临时解决方案是将同步电容器与电网跟踪逆变器配对,这可能会延长运行电力系统的稳定性,同时在可再生能源可用性高的时期关闭同步发电机。这项工作使用 PSCAD 模拟连接到变长输电线的双总线系统来检查这种解决方案的暂态稳定性,其中一个总线上有一个同步电容器,另一个总线上有一个具有电网支持功能的电网跟踪逆变器。系统面临负载阶跃、平衡故障和不平衡故障扰动。研究发现,对于长度达 125 公里的输电线路,该简单系统在经历 10% 的负载阶跃或多种故障类型后,能够恢复到稳定状态。