(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 2 月 5 日发布。;https://doi.org/10.1101/2025.02.05.636566 doi:bioRxiv preprint
基本的局部比对搜索工具(BLAST)是一个程序,该程序报告了数据库中查询序列和序列之间的局部相似性区域(在核苷酸或蛋白质水平上)。检测序列同源性的能力使我们能够确定基因或蛋白质是否与其他已知基因或蛋白质有关。检测序列同源性还促进了由多个基因共享的保守域和基因家族成员的鉴定。BLAST之所以流行,是因为它可以有效地识别两个序列之间局部相似性的区域。更重要的是,BLAST基于强大的统计框架。此框架允许BLAST确定两个序列之间的比对是否具有统计学意义(即,获得与该分数或更高偶然得分的比对的概率很低)。在进行注释之前,重要的是要了解我们在分析中使用爆炸时所做的推论。进化论的理论提出,所有生物体都通过共同祖先的形成降临。在分子水平上,祖先DNA序列随时间差异(通过点突变的积累,重复,缺失,转置,重组事件等)在
方法:ProSTRUC是一种基于Python的同源性建模工具,旨在通过直观的,自动化的管道来简化蛋白质结构的预测。集成了用于序列对齐的生物繁殖,用于模板识别的BLAST和promod3用于结构生成,ProStruc简化了复杂的工作流入到用户友好的界面中。该工具使研究人员能够输入蛋白质序列,从蛋白质数据库(PDB)等数据库中识别同源模板,并生成具有最小计算专业知识的高质量3D结构。ProStruc实现了两个阶段的Vsquarealidation过程:首先,它使用TM-Align进行结构比较,评估均平均偏差(RMSD)和针对参考模型的TM分数。第二,它通过qmeandisco评估模型质量,以确保高精度。
(A) 果蝇 (Drosophila melanogaster) 和菠萝蜜 (D. ananassae) 中 Myc 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (顶部) 和菠萝蜜 (D. ananassae) (底部) 中目标基因 Myc 所在的 DNA 链。指向右侧的细箭头表示 Myc 在菠萝蜜 (D. ananassae) 和果蝇 (D.melanogaster) 中位于正 (+) 链上。指向与 Myc 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向 Myc 相反方向的宽基因箭头相对于细箭头位于相反链上。果蝇 (D. ananassae) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因的直系同源性。 D. ananassae 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符特定于 D. ananassae。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014 年)。D. ananassae 中 Myc 的编码区显示在用户提供的 Track(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括 NCBI RefSeq 基因的 BLAT 比对(深蓝色,D. ananassae 的 Ref-Seq 基因比对)、D. melanogaster 蛋白质的 Spaln(紫色,D. melanogaster 的 Ref-Seq 蛋白质比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性、成年雄性和沃尔巴克氏体治愈胚胎的 RNA-Seq(分别为红色、浅蓝色和粉色;D. ananassae 的 Illumina RNA-Seq 读数比对)以及使用 D. ananassae RNA-Seq 由 regtools 预测的剪接点(Graveley 等人,2011;SRP006203、SRP007906;PRJNA257286、PRJNA388952)。显示的剪接点的读取深度 >1000,支持读取为红色。(C)果蝇 Myc-PB 的点图(x 轴)与
研究 [12–15],这使得拟谷盗成为比较遗传学、分子生物学、进化和发育等不同生物过程的绝佳模型 [2, 10, 11]。鉴于果蝇的衍生生物学,拟谷盗也
研究 [12–15],这使得拟谷盗成为比较遗传学、分子生物学、进化和发育等不同生物过程的绝佳模型 [2, 10, 11]。鉴于果蝇的衍生生物学,拟谷盗也
在评估ADA的模拟技术领域的主要参与者时,几种技术功能至关重要,尤其是关于数字双胞胎。高技术能力可确保数字双胞胎可以准确复制并预测ADAS系统的行为,从而为开发,测试和验证提供了可靠的平台。最重要的考虑是其解决方案的技术能力。高技术熟练度可确保数字双胞胎可以准确复制并预测ADAS系统的行为,从而为开发,测试和验证提供可靠的平台。技术能力的关键方面包括模拟精度,传感器集成,方案建模和实时性能。随着ADA的复杂性的增长,可伸缩性成为进一步的重要标准。解决方案应通过利用高级计算资源(例如边缘计算和云服务)来管理大型数据集并支持实时性能测试。
MAAT013,一种免疫抑制剂弹药剂,用于恢复微生物组并治疗AGVHD:类固醇依赖性与类固醇 - 难治性患者的AGVHD反应
culex quinquefasciatus说是在世界的热带和亚热带地区分布的蚊子。这是一种夜间活性的,机会性的血液源,媒介是许多动物和人类疾病,包括西尼罗河病毒和禽类疟疾。当前向量控制方法(例如物理/化学)越来越无效;杀虫剂的使用还对人类和生态系统健康构成危害。基因组编辑的进步允许开发遗传昆虫控制方法,这些方法是特异性物种特异性的,从理论上讲,非常有效。crispr/cas9是一种细菌衍生的可编程基因编辑工具,可在一系列物种中起作用。我们描述了Quinquefasciatus中同源性修复的第一个成功的种系基因基因概括。使用CRISPR/CAS9,我们将编码荧光蛋白荧光团(HR5/IE1 -DSRED,CQ7SK -SGRNA)编码的SGRNA表达盒和标记基因集成到kynurenine 3 − 3-单核酶(KMO)基因中。我们达到的最小转化率为2.8%,类似于其他蚊子物种的速率。确定了预期基因座的精确敲门in。插入纯合子在早期幼虫中表现出白眼表型,并且通过化合物表现出隐性致命表型。这项工作为工程C. Quinquefasciatus提供了一种有效的方法,为该向量开发遗传控制工具提供了一种新工具。