基于核酸酶的基因组编辑的治疗应用将受益于通过同源定向修复 (HDR) 进行转基因整合的改进方法。为了提高 HDR 效率,我们筛选了六种 DNA 依赖性蛋白激酶催化亚基 (DNA-PKcs) 的小分子抑制剂,DNA-PKcs 是替代修复途径非同源末端连接 (NHEJ) 中的关键蛋白,可产生基因组插入/缺失 (INDEL)。从这次筛选中,我们确定 AZD7648 是最有效的化合物。使用 AZD7648 可显著增加 HDR(高达 50 倍)并同时降低各种治疗相关的原代人类细胞类型中不同基因组位点的 INDEL。在所有情况下,HDR 与 INDEL 的比率均显著增加,并且在某些情况下,实现了无 INDEL 的高频 (>50%) 靶向整合。这种方法有可能提高基于细胞的疗法的治疗效果并扩大靶向整合作为研究工具的使用范围。
MAAT013,一种免疫抑制剂弹药剂,用于恢复微生物组并治疗AGVHD:类固醇依赖性与类固醇 - 难治性患者的AGVHD反应
摘要 简介:基于成簇的规律间隔的短回文重复序列及其相关蛋白 (CRISPR-Cas) 的技术通过诱导位点特异性双链断裂 (DSB) 在宿主基因组中产生靶向修饰,而位点特异性双链断裂可作为体外和体内模型中同源定向修复 (HDR) 的底物。HDR 通路可以增强外源 DNA 模板掺入 CRISPR-Cas9 介导的 DSB 位点。由于 HDR 通路的速率低,精确基因组编辑的效率降低。提高 HDR 的效率可以提供基于 CRISPR-Cas9 技术的快速、简便和准确的技术。方法:本研究概述了基于小分子和改进的 CRISPR-Cas9 系统的精确基因组编辑策略的尝试。结果:为了提高靶细胞中的 HDR 率,已经引入了几种合理的策略,例如生成 CRISPR 效应嵌合蛋白、抗 CRISPR 蛋白、用供体模板修饰的 Cas9,以及使用经过验证的合成或天然小分子来抑制非同源末端连接 (NHEJ)、刺激 HDR 或同步细胞周期。最近,高通量筛选方法已被用于鉴定与 CRISPR 系统一起可以通过 HDR 调节精确基因组编辑的小分子。结论:刺激 HDR 成分或抑制 NHEJ 可以提高 CRISPR-Cas 介导的工程系统的准确性。生成嵌合可编程内切酶提供了这种机会来引导 DNA 模板靠近 CRISPR-Cas 介导的 DSB。小分子及其衍生物还可以有效地阻断或激活某些 DNA 修复途径,并为提高 HDR 效率带来新的视角,尤其是在人类细胞中。此外,小分子库的高通量筛选可以发现更多有前景的化学物质,从而改善 HDR 效率和 CRISPR-Cas9 系统。
使用的缩写:ACK,激活的CDC42相关酪氨酸激酶; GEF,鸟苷核苷酸交换因子; PH,Pleckstrin同源性; DH,DBL同源性; PIP 2,磷脂酰肌醇4,5-双磷酸;间隙,GTPase激活蛋白; GDI,鸟苷核苷酸解离抑制剂; SRF,血清反应因子; NF-κB,核因子κB; Jnk,c-jun n末端激酶;婴儿床,cdc42/rac-Interactive结合; REM,Rho ectector同源性; RKH,ROK – Kinectin同源性; MLC,肌球蛋白轻链; PI-4-P5K,磷脂酰肌醇-4-磷酸5-激酶; GTP [s],鸟嘌呤5« - [γ -thio]三磷酸; MAP激酶,有丝分裂原激活的蛋白激酶; MLK,混合细胞激酶; ACC,反平行线圈; BTK,布鲁顿的酪氨酸激酶; MBS,肌球蛋白结合亚基; ERM,Ezrin/radixin/Moesin; FH,形态学;黄蜂,Wiskott-Aldrich-Syndrome蛋白;波浪,黄蜂样的垂直蛋白质蛋白; lim激酶; EGF,表皮生长因子; TNFα,肿瘤坏死因子α; Mekk,地图激酶激酶激酶; PAK,P21激活的激酶; PKN,蛋白激酶N; MRCK,肌发育症激酶相关的CDC42结合激酶。1应向谁致辞(电子邮件Anne.bishop!ucl.ac.uk)。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2020 年 1 月 15 日发布。;https://doi.org/10.1101/2020.01.15.907766 doi:bioRxiv 预印本
摘要图像处理设备和技术的快速演变确保了新型图片分析方法的发展。是测量功能拓扑特性的最强大但计算可能的代数技术之一是持续的同源性。这是一个代数不变的,可以在不同的空间分辨率下捕获拓扑细节。持续的同源性使用一组采样点(例如像素)研究了空间的拓扑特征。它可以跟踪由被称为过滤的操作产生的嵌套空间变化引起的拓扑特征的外观和消失,在这种操作中,在我们的情况下,参数量表增加了像素的强度,以检测在各种尺度范围内研究空间的变化。此外,在机器学习的层面上,最近有许多研究和文章目睹了同源性持久性与机器学习算法之间的结合。在另一个层面上,前列腺癌被诊断为描述称为格里森评分的癌症严重程度的评分标准。经典的格里森系统定义了五种组织学生长模式(等级)。在我们的研究中,我们建议研究从新的光学显微镜技术发行的一些腺体上的格里森评分,称为Slim。这种新的光学显微镜技术在光成像中结合了两个经典的思想:Zernike的相比显微镜和Gabor的全息图。在这些图像上计算持续的同源性特征。我们建议将这些图像分类为相应的格里森评分。在同源持久性特征上应用的机器学习技术在这些图像中检测前列腺癌的正确格里森评分非常有效,并且表现出高于95%的精度。
结果:共检测呼吸道标本2376份,甲型流感病毒检测阳性680例,其中随机抽取129例甲型流感病毒阳性病例进行分型,分离出112个H1N1亚型和17个H3N2亚型;随机抽取17株甲型流感病毒(H1N1)的HA基因与WHO 2023年推荐的两株疫苗株(A/Wisconsin/67/2022(H1N1)和A/Victoria/4897/2022(H1N1))进行氨基酸同源性比对。 HA基因同源性结果分别为98.24~98.65%和98.41~98.82%,NA基因同源性结果分别为98.79~99.15%和98.94~99.29%。17株菌株HA基因14个氨基酸位点发生改变,部分菌株分别对Sa和Ca抗原决定簇有贡献;17株菌株NA基因13、50、200、339、382和469位点发生突变。测序菌株、疫苗株及2023株国内代表株独立形成一个分支6B.1A.5a.2a。
高地棉花(Gossypium hirsutum L.)占全球棉花生产的90%以上,为全球纺织品和油料种子工业提供了天然材料。提高高地棉花产量的一种策略是增加了杂种的采用。然而,棉花的灭绝是非常耗时的,棉花雄性不育的遗传来源受到限制。在这里,我们回顾了已知的植物核男性不育(NMS)的生物化学模式,通常称为植物遗传性不育(GMS),并将其表征为四组:转录调控,剪接,脂肪酸的运输和加工以及糖的运输和加工和加工。我们已经探索了30个单子叶植物(玉米,大米和小麦)和三个双子(拟南芥,大豆和番茄)的30 gms基因的蛋白序列同源性。我们已经分析了单子植物和双子DICOT GMS基因之间的进化关系,以描述这些基因鉴定的相对相似性和相关性。五个是较低的源物种,四种是单子叶植物独有的,五核,在所有物种中有14个高度保守,而另外则有两个。使用此源,我们已经在高地棉质基因组中鉴定了23个潜在的候选基因,用于开发用于杂交棉花育种的新雄性无菌种质。将基于同源性的研究与基因组编辑结合使用可以允许发现和验证GMS基因,这些GMS基因以前在棉花中未观察到多样性,并且可能允许在杂化棉产生中使用理想的雄性无菌突变体。
类器官可通过诱导多能干细胞和胚胎干细胞的引导分化生成,也可从从成体组织中分离的细胞生成 1 。成体干细胞 (ASC) 衍生的类器官是自组织结构,可重现其来源的不同上皮组织的细胞组成、三维 (3D) 结构和功能的各个方面,同时保持基因组稳定性 2、3 。从转基因小鼠品系(尤其是敲入模型)中获得类器官的可能性使得能够生成工程化小鼠类器官,这些类器官已被用作多功能体外工具来回答各种生物学问题 4 3 10 。生成工程化人类 ASC 衍生类器官需要在建立品系后应用有效的体外基因组编辑策略。CRISPR3Cas9 技术大大简化了基因工程。迄今为止,这些方法主要限于非同源末端连接 (NHEJ) 介导的将插入/缺失引入类器官内源性基因座,从而导致基因突变 11 3 14 。通过利用 HDR 通路,引入单碱基替换来纠正囊性纤维化肠道类器官中的 CFTR 基因座 15 ,并且已经生成了一些人类 ASC 类器官敲入报告系,但主要是在结肠癌类器官中 16 3 18 。使用 HDR 的敲入利用了细胞修复双链断裂 (DSB) 的机制。可以使用 CRISPR3Cas9 在特定位点引入此类断裂。HDR 是用于靶向插入的最常用方法,但该过程效率低下并且要求细胞处于 S 期 19,20 。此外,HDR 需要克隆供体质粒,因为需要存在每个基因特有的同源臂(图 1a)。最近的研究表明,CRISPR 诱导的 DSB 可激活
摘要:CAR-T 细胞疗法涉及通过在 T 细胞表面添加嵌合抗原受体 (CAR) 对 T 细胞进行基因改造,使其识别和攻击肿瘤细胞。在本研究中,我们使用 AAV 血清型 6 (AAV6) 的双重转导将抗 CD19 CAR 整合到人类 T 细胞的已知基因组位置。第一个病毒载体表达 Cas9 内切酶和针对 T 细胞受体 alpha 恒定基因座的向导 RNA (gRNA),而第二个载体携带用于同源介导的 CAR 插入的 DNA 模板。我们评估了三种 gRNA 候选物并确定了它们在产生插入/缺失方面的效率。AAV6 成功地在体外传递了 CRISPR/Cas9 机制,双重转导的分子分析表明 CAR 转基因整合到了所需位置。与通常用于生成 CAR-T 细胞的随机整合方法相比,靶向整合到已知基因组位点可以降低插入诱变的风险,并提供更稳定的 CAR 表达水平。至关重要的是,这种方法还可以敲除内源性 T 细胞受体,从而允许从同种异体供体中提取靶细胞。这带来了令人兴奋的“现成”通用免疫疗法的可能性,这将大大简化 CAR-T 细胞的生产和给药。