摘要。在金属材料的定向能量沉积 (DED) 工艺中,线激光增材制造 (WLAM) 的特点是使用激光束熔化金属线并产生焊珠。重叠焊珠的连续沉积产生体积以获得零件。因此,控制焊珠的几何形状对于增材制造工艺至关重要。一些研究工作已经研究了这些几何形状以及主要制造参数对其尺寸的影响,但很少有研究进料方向或线角度的影响。此外,所有关于线角度的研究都是在横向进料和恒定激光方向下进行的。本文重点研究了同轴线进料的沉积头方向对焊珠几何形状的影响,其中有 3 束激光。以相对于水平基板的不同方向进行实验,并使用光学仪器测量外部轮廓,以提取平均轮廓和特征尺寸。结果表明,头部绕其轴线旋转和横向倾斜会影响焊珠的高度、宽度和不对称性。
COAX-Rohre 和 Formteile mit einem Prozessrohr in ultron-Qualität bieten ein hohes Maß an Sicherheit und Eliminieren das Risiko einer Kontamination von Reinstmedien nahezu vollstän- dig。 Die Dockweiler-Fertigung wie auch die qualitätskontrollen sind speziell auf die höchsten Standards für Prozesseinheit in der Halbleiter- and Pharmaindustrie ausgerichtet.凭借专业知识和灵活的技术,COAX-Produkte 可以单独使用,并具有特殊的规格和性能。标准化产品是指在工程设计方面的标准产品,是工程项目中的重要组成部分。
*trt =热响应测试,热能性能的评估¹测量值,英格兰测试设施; GRD钻孔方法;资料来源:Tracto Technik²在10°C的地面温度下计算了提取能力; 2.5 WMK热导率;来源:GLD
用仿生血管网络打印人体组织和器官越来越感兴趣。虽然可以将灌注通道嵌入到细胞和密集的细胞矩阵中,但它们目前不具有天然血管中发现的仿生结构。在这里,开发了在功能组织中的同轴牺牲写作(共旋),这是一种嵌入的生物印刷方法,能够在颗粒水凝胶和密度细胞内部的细胞水凝胶中产生分层分支,多层血管网络。同轴打印头的设计具有扩展的核 - 壳配置,以促进嵌入式生物打印过程中印刷的分支容器之间的稳健核心 - 壳和壳壳互连。使用优化的核壳墨水组合,由光滑肌肉细胞壳组成的生物模拟血管同轴印刷成由颗粒状基质组成的:1)透明的alginate Micropoparticles,2)牺牲性微粒胶原蛋白的spe虫,或者来自人类spertiacts spertiacs cardiac cardiac cardiac cardiac sperters sperters carderip衍生。仿生血管。重要的是,发现在灌注下成熟,同步打败并在体外表现出心脏效力的药物反应。这次进步开辟了新的途径,用于针对药物测试,疾病建模和治疗用途的血管化器官特异性组织的可扩展生物制造。
rajeshkannahiitm2020@gmail.com和adhisakthi02@gmail.com摘要:本文主要涉及加工操作,例如转弯操作,材料拆卸率和表面粗糙度是要考虑优质产品的重要参数。为实验选择的材料是Delrin 500。转动是广泛用于创建圆柱体组件的重要过程之一,并且还用于表面完成产品以使其光滑。如今,塑料材料被广泛用于制造各种组件。要制作具有高维精度的组件,请使用转动操作。转弯的主要关注点是工具成本和过程对可加工性特征的影响。可以看出,输出响应值具有最小的粗糙度平均值和高度的几何质量精度。高度表面饰面是由中速,进料速率和小鼻子半径诱导的。使用中速,进料和较大的鼻半径来最大程度地减少同轴误差。实验发现,第三个标本(RPM -750)(进料-0.08 mm/rev)和(鼻半径0.8)获得了最小几何误差以及最小的表面粗糙度。delrin是一种结晶塑料,可在弥合金属和塑料之间缝隙的特性平衡。Delrin具有较高的拉伸强度,抗蠕变性和韧性。它也表现出低水分吸收关键词:转动操作
摘要 呼吸是机体的重要生理过程,对维持人体健康起着至关重要的作用。基于可穿戴压电纳米纤维的呼吸监测因自供电、高线性、非侵入性和便捷性而受到广泛关注。但传统压电纳米纤维灵敏度有限,机电转换效率低,难以满足医疗和日常呼吸监测要求。这里我们提出了一种具有普遍适用性的高灵敏度压电纳米纤维,其特征是聚偏氟乙烯(PVDF)和碳纳米管(CNT)的同轴复合结构,记为PS-CC。在阐明渗透效应增强机制的基础上,PS-CC表现出优异的传感性能,灵敏度高达3.7 V/N,机电转换响应时间为20 ms。作为概念验证,纳米纤维膜无缝集成到面罩中,有助于准确识别呼吸状态。在一维卷积神经网络(CNN)的帮助下,基于PS-CC的智能口罩可以识别呼吸道和多种呼吸模式,分类准确率高达97.8%。值得注意的是,这项工作为监测呼吸系统疾病提供了有效的策略,并为日常健康监测和临床应用提供了广泛的实用性。
抽象呼吸是身体的关键生理过程,在维持人类健康中起着至关重要的作用。可穿戴压电纳米纤维的呼吸监测引起了极大的关注,因为它的自力力量,高线性,非侵入性和便利性。但是,由于其机电转换效率低,传统压电纳米纤维的敏感性有限,因此很难满足医疗和每日呼吸监测要求。在这里,我们提出了一种普遍适用的,高度敏感的压电纳米纤维,其特征在于聚偏二氟化物(PVDF)和碳纳米管(CNT)的同轴复合结构,该结构称为PS-CC。基于阐明渗透效应的增强机制,PS-CC表现出出色的感应性能,高灵敏度为3.7 V/N,快速响应时间为20 ms,用于机电转换。作为概念验证,纳米纤维的膜无缝整合到面膜中,从而促进了对呼吸状态的准确识别。在一维卷积神经网络(CNN)的协助下,基于PS-CC的智能面具可以识别呼吸道和多种呼吸模式,其分类精度高达97.8%。值得注意的是,这项工作为监测呼吸道疾病提供了有效的策略,并为日常健康监测和临床应用提供了广泛的实用程序。
摘要:同轴丝材激光金属沉积是一种多功能、高效的增材工艺,可在复杂结构的制造中实现高沉积速率。本文研究了三光束同轴丝材系统,特别关注了沉积高度和激光散焦对所得珠子几何形状的影响。随着沉积间隔距离的变化,工件照明比例也会发生变化,该比例描述了直接进入原料丝材和基材的能量比。在不同的散焦水平和沉积速率下沉积单个钛珠,并测量和分析珠子的纵横比。在实验设置中,发现散焦水平和沉积速率对所得珠子的纵横比有显著影响。随着离光束会聚平面的散焦水平增加,光斑尺寸增加,沉积轨道更宽更平。工艺参数可用于将沉积材料调整到所需的纵横比。在同轴丝材沉积中,散焦为丝材和基材之间的热量分布提供了一种调节机制,对所得沉积物有重要影响。
印刷人体组织结构充满了仿生的血管网络,对组织和器官工程的兴趣越来越大。现在可以将灌注通道嵌入到细胞和密集的细胞矩阵中,但它们缺乏天然血管的分支或多层结构。在这里,我们报告了一种可推广的方法,用于在软矩阵中打印层次分支的血管网络。,我们通过同轴嵌入式印刷(Co-Emb3DP)将仿生血管通过同轴性牺牲写作(共旋转)(共旋转)将其嵌入颗粒状水凝胶基质中。每种方法都依赖于扩展的核心壳打印头,该打印头促进了印刷分支容器之间的便捷互连。尽管仔细优化了多个核壳墨水和矩阵,但我们表明可以同轴印刷嵌入的仿生血管,该容器具有围绕灌注液体的光滑肌肉细胞壳。在用汇合层的内皮细胞层播种时,它们表现出良好的屏障功能。作为最终的演示,我们构建了由人类诱导的多能干细胞衍生的心脏球体的密集细胞基质组成的仿生血管化心脏组织。重要的是,这些共旋转心脏组织在灌注下成熟,同步打击,并在体外表现出心脏有效的药物反应。这次进步开辟了新的途径,用于针对药物测试,疾病建模和治疗用途的器官特异性组织的可扩展生物制造。