关于Aenium:Aenium于2018年3月出生,以响应新材料工程,复杂的金属添加剂制造以及着重于航空航天,国防和核能部门的创新。 在TRL9下的大量空间飞行组件以及高责任运行下,它在高功能需求和认证的应用中开发了项目,其中具有金属添加剂制造和工业后处理的复杂材料的创新是客户的关键。 Aenium在材料工程,金属工业添加剂制造,后处理,资格实验室和冶金分析方面具有创新的内部功能。关于Aenium:Aenium于2018年3月出生,以响应新材料工程,复杂的金属添加剂制造以及着重于航空航天,国防和核能部门的创新。在TRL9下的大量空间飞行组件以及高责任运行下,它在高功能需求和认证的应用中开发了项目,其中具有金属添加剂制造和工业后处理的复杂材料的创新是客户的关键。Aenium在材料工程,金属工业添加剂制造,后处理,资格实验室和冶金分析方面具有创新的内部功能。
量子低密度平价检查代码的固有退化性对它们的解码构成了挑战,因为它大大降低了经典消息传播解码器的错误校正性能。为了提高其性能,通常采用后处理算法。为了缩小算法解决方案和硬件限制之间的差异,我们引入了一种新的后处理后处理,并具有硬件友好的方向,从而提供了与最新艺术技术相关的错误校正性能。所提出的后处理,称为校验,灵感来自稳定器的启发,同时大大减少了所需的硬件资源,并提供了足够的灵活性,以允许不同的消息时间表和硬件体系结构。,我们对一组帕累托架构进行了详细的分析,这些帕累托架构在延迟和功耗之间具有不同的权衡,这些分析源自FPGA董事会上实施的设计的重新分析。我们表明,可以在FPGA板上获得接近一个微秒的延迟值,并提供证据表明,对于ASIC的实现,可以获得较低的延迟值。在此过程中,我们还揭示了最近引入的T覆盖层和随机层调度的实际含义。
基于融化的添加剂制造技术提供了对形式的精美控制,并且可以轻松地制造复杂的净形状,这是不可能通过传统处理技术实现的。然而,尽管声称在开放学术文献中相反,但这些技术由于其潜在的物理学和热应力,快速液体相混合,金属间的形成,破裂等而与直接打印成分或微观结构梯度相反。本演讲将通过智能后处理来介绍两种克服这些限制的方法。i将首先描述如何通过融化的添加性制造的预成型来创建网状成分分级的互穿复合材料。接下来,我将展示如何通过后处理热处理来创建具有量身定制的疲劳和蠕变特性的特定地点谷物结构。关键要点是,打印的末尾仅仅是开始 - 明智的后处理可以通过功能分级的结构来解锁净形零件,以优化性能。
背景:战争后创伤后应激障碍(PTSD)的人在与其他慢性疾病结合使用时会出现更严重的症状,导致病情恶化。目的:本研究旨在研究眼动脱敏和重新处理(EMDR)治疗的影响以及基于计算机的认知康复对PTSD的认知偏见的影响。方法:这是一项准实验研究,具有预测试,后测,随访和对照组。统计人口包括烈士和退伍军人基础下的所有退伍军人,伊朗,伊朗Ahvaz的覆盖范围。在必要的检查后,将45名合格的参与者随机分配给两个实验组和一个对照组(每组15个参与者)。实验组分别接受了EMDR疗法和基于计算机的认知康复,而对照组未接受干预。使用SPSS-24中的重复测量方差分析用于数据分析。结果:结果表明,与对照组,EMDR和基于计算机的认知康复干预措施相比,具有PTSD的退伍军人的认知偏见显着影响(P <0.001)。此外,认知偏差从后测和随访得分显着,与预测试的认知偏差显着不同(p <0.001)。结论:由于EMDR和基于计算机的认知康复改善了具有PTSD的退伍军人的认知偏见,因此建议采用这些方法来改善其心理特征。
数量,例如直接和间接效应,具有后处理后的调节效应,从而在流行的参数条件下扩大了识别工具箱。
实体单元 ................................................................................................................................................ 46 9.2 边界条件 .............................................................................................................................................. 48 9.3 网格收敛 .............................................................................................................................................. 50 9.4 后处理 ................................................................................................................................................ 50 9.5 结果标称应力方法 ............................................................................................................................. 51
机翼,在所有操作环境中提供出色的 SNR,同时允许机翼上方的气流不受干扰。在有效载荷舱中,包含 GNSS 接收器板的 gBox 紧紧绑在周围的保护泡沫中(图 2,A)。接收器以 20 Hz 的频率记录 GNSS 数据以对轨迹进行后处理,并在 GNSS 日志中以优于毫秒级的精度标记来自相机的反馈事件。与实时动态 (RTK) 校正系统相比,UX5 HP 使用后处理动态 (PPK) 校正轨迹和事件标记位置。这种选择是专门考虑到 UX5 HP 平台的高速和长距离特性而做出的,在整个飞行过程中不依赖无线电链路来获得准确的解决方案使系统更加可靠。作为额外的好处,PPK 计算的解决方案可以通过利用更精确的轨道数据和更复杂的平滑、过滤和插值算法比 RTK 更准确。此外,您可以减少在现场花费的时间,因为设置仅用于记录的基站不太复杂,并且当使用互联网基础数据源时,基站甚至不是必需的。在办公室花费的时间与仅 RTK 系统相同,因为对于基于 RTK 的 UAS,通常还需要进行后处理才能获得基站的精确位置。