从前,地球科学很幸运能拥有出色,清晰的科学领导者,例如朱尔·查尼(Jule Charney)和弗朗西斯·布雷瑟顿(Francis Bretherton),他们的知识和概述是对气候科学的知识和概述。还有许多其他科学家对科学方法有深刻的了解,他们帮助刺激了该领域的进步并确保了进步的认可。顶级科学作家,例如沃尔特·沙利文(Walter Sullivan),可以依靠这样的科学研究人员对主要问题的敏锐描述和解决方面的进步。我们回想起彼得·斯通(Peter Stone)向麻省理工学院(MIT)的同事学习,他曾在NASA Goddard太空研究研究所担任气候研究的主要顾问,回溯到查尼(Charney)试图决定全球平衡气候敏感性是否增加了2°C还是4°C,这是更大的。正确的答案将具有巨大的实际含义。
摘要:无法修复受损的 DNA 会严重损害任何生物体的完整性。在真核生物中,DNA 损伤反应 (DDR) 在细胞核内以非随机方式在染色质(一种紧密组织的 DNA-组蛋白复合物)中起作用。因此,染色质会协调各种细胞过程,包括修复。在这里,我们检查 DNA 损伤之前、期间和之后的染色质状况,重点关注双链断裂 (DSB)。我们研究染色质在修复过程中是如何被修改的,不仅在受损区域周围(顺式),而且在全基因组范围内(反式)。最近的证据突出了一个复杂的状况,其中不同的染色质参数(硬度、压缩度、环)被暂时修改,为 DDR 的每个特定阶段定义“代码”。我们说明了 DDR 的一个新颖的方面,其中染色质修饰有助于 DSB 损伤染色质以及未损伤染色质的移动,从而确保 DSB 的动员、聚集和修复过程。
基于 ISIGrowth 的研究,我们在本政策简报中提供了过去二十年欧盟金融化增长模式的实证证据,并分析了其对欧盟 2030 年议程的若干目标(包括包容性增长、创新、不平等和金融稳定)可能产生的不利影响。最后,我们提供了一些政策见解和建议。金融化的概念一方面反映了非金融公司参与与生产无直接关系的金融活动,另一方面反映了金融部门相对于整体经济的相对规模。一些实证指标表明,过去二十年欧元区的金融化一直在增加。这一发现很重要,因为尽管迄今为止金融化主要被认为是增长和创新的驱动力,但如今有大量理论论据和实证证据表明过度金融化对增长、创新、不平等和金融稳定产生不利影响。首先,过度金融化会抑制经济增长,因为这意味着更大比例的信贷流向了没有结果的投资项目,可能引发经济危机(例如通过房价泡沫)。其次,金融化对创新产生负面影响,因为承担创新风险的行为者和从创新中获取租金的行为者之间的分离意味着再投资利润的份额较低(例如通过短期主义和股票回购)。第三,金融化通过增强高收入者在高工资和低税收方面的议价能力,以及在危机时期通过向金融机构提供财政援助增加公共预算的负担,加剧了不平等。第四,金融化可能导致金融不稳定,因为它既增加了相互关联的金融机构的杠杆率,也增加了大型资产类别定价错误的风险(例如 2008 年金融危机期间的杠杆率动态和抵押贷款支持证券的错误定价)。我们提出了一些有助于抑制过度金融化的对策,包括:(i)促进实体部门的需求; (ii) 超越传统的概念框架,建立以任务为导向的计划来修复市场失灵,并致力于创建可能根本不存在的市场;(iii) 鼓励将高层管理人员的薪酬计划与长期利润和企业社会责任目标相结合;(iv) 研究为银行向实体经济(非房地产部门)贷款设定最低比率的可能性;(v) 研究为金融机构设定最高金融内部杠杆率的可能性。
太阳在爆炸性太阳活动中释放了大量能量,例如太阳耀斑和冠状质量弹出(Webb和Howard,2012; Aschwanden等,2017; Benz,2017)。太阳能电晕可以加热到数百万度,大量带电的颗粒几乎可以加速到光速(Desai和Giacalone,2016年; Reames,2017)。加热的等离子体和高能量颗粒会在整个电磁频谱中增加太阳辐射,从无线电到伽马射线波长,这可能会在大约8分钟后立即对地球上层大气产生深远的影响。这些在地球上层大气中产生了额外的电离和加热,导致无线电停电,GNSS信号干扰和跟踪损失,航天器上的阻力增加,影响全球电路(GEC)以及许多其他现象(Botermer和Daglis,2007年; Buzulukova和buzulukova; Buzulukova and tsurutani; buzulukova and tsurutani; tsurutani; tasurutani; tacz22222;最近的研究表明,太阳耀斑效应可以通过电动力耦合扩展到地球的磁层(Liu等,2021; Liu等,2024)。当高能颗粒通过星际介质传播并到达地球附近(称为太阳能粒子(SEP)事件)时,它们可以对太空中的宇航员和航天器电子构成危险的辐射威胁(Vainio等人(Vainio等人,2009年,2009年; Shea and Smart,2012年)。该研究主题旨在在太阳及其地理上的后果上收集有关高能过程的科学贡献。本电子书中包含了八篇研究文章和一项综述,重点是太阳耀斑的多波长观察,加速度和能量颗粒的运输以及太阳喷发对耦合的磁层 - 离子层 - 热层 - 热层系统的影响。
1 California Timber Harvest, 2022, California Forest Foundation https://www.calforestfoundation.org/resource/timber-management/ California Timber Harvest by Year, 1952-2006, US Forest Service, USDA https://www.fs.usda.gov/pnw/pubs/pnw_gtr866.pdf 2 California Forests 80%-600% Denser Than 150 Years Ago By Jim Jacobs, GWire, September 15, 2020 https://gvwire.com/2020/09/15/california-forests-80-600-denser-than-150-years-ago-uc-researcher-says- biomass-is-one-of-the-answers/ To save forests, cut some trees down,科学家说,科学顾问乌拉·克罗巴克(Ula Chrobak),2017年4月21日https://www.science.org/content/article/save-forests-cut-forests-cut-some-trees-trees-trees-down-scientists-say-say-say say二十世纪二十世纪森林结构中的二十多个林区转变。 https://www.pnas.org/doi/10.1073/pnas.1410186112
1,2,3,4 苏班迪博士大学健康科学学院,印度尼西亚东爪哇省任抹 摘要 背景:老年糖尿病患者的自我护理管理不一致,依从性低。这一事件可能受到老年人疾病管理能力和家庭参与的影响,这可能不利于他们的健康和护理。本研究旨在制定一项强调自我效能和家庭参与的老年糖尿病管理计划。 方法:本研究采用横断面方法的解释性调查设计。采用概率抽样方法,特别是简单随机抽样,从 100 名糖尿病患者及其家人中选择本研究的受访者。我们利用功能后果模型和以家庭为中心的护理理论作为研究框架,为老年人糖尿病管理创建了一份全面的评估问卷。采用的统计方法是 SEM-PLS。 结果:外部模型分析显示每个构造的所有指标都是有效的,因子载荷值 > 0.7。内部模型分析显示,家庭结构、家庭功能、家庭压力源、老年危险因素、年龄相关变化和老年后果功能等变量具有显著影响,t值>1.96,p值<0.05。结论:以自我效能和家庭支持为基础的糖尿病管理模式可提高老年人的自我护理管理水平。护士应采用糖尿病管理模式,提高患者自主性,教育家人如何支持亲人,从而提高糖尿病老年人的自我护理实践。
早期诊断和生活方式修改对于管理NAFLD至关重要。对处于高风险的个体(例如肥胖,糖尿病或代谢综合征)的定期筛查有助于在早期阶段识别该疾病,从而及时进行干预措施。此外,研究表明,生活方式的变化,包括体重减轻,均衡饮食和增加的体育锻炼,可以显着扭转NAFLD造成的损害,并防止其发展为更严重的形式,例如肝硬化。研究表明,即使减肥5%-10%也会导致肝脏脂肪和炎症减少,从而为受疾病影响的人提供了希望。
Build-A-Genome 课程的作者:Breeana G. Anderson、Abena Apaw、Pavlo Bohutskyi、Erin Buchanan、Daniel Chang、Melinda Chen、Eric Cooper、Amanda Deliere、Kallie Drakos、Justin Dubin、Christopher Fernandez、Zheyuan Guo、Thomas Harrelson、Dongwon Lee、Jessica McDade、Scott Melamed、Héloise Muller、Adithya Murali、José U. Niño Rivera、Mira Patel、Mary Rodley、Jenna Schwarz、Nirav Shelat、Josh S. Sims、Barrett Steinberg、James Steinhardt、Rishi K. Trivedi、Christopher Von Dollen、Tianyi Wang、Remus Wong、Yijie Xu、Noah Young、Karen Zeller 和 Allen Zhan。 1 纽约大学朗格尼健康学院系统遗传学研究所和生物化学与分子药理学系,纽约,纽约州 10016,美国 2 约翰霍普金斯大学彭博公共卫生学院环境健康与工程系,美国马里兰州巴尔的摩 21205,美国 3 欧洲分子生物学实验室 (EMBL),基因组生物学部,德国海德堡 69117 4 爱丁堡大学生物科学学院,英国爱丁堡 EH9 3BF 5 爱丁堡大学信息学院,英国爱丁堡 EH8 9AB 6 约翰霍普金斯大学惠廷工程学院生物医学工程系,美国马里兰州巴尔的摩 21218,美国 7 约翰霍普金斯大学克里格艺术与科学学院生物学系,美国马里兰州巴尔的摩 21218,美国 8 化学与生物分子工程系,约翰霍普金斯大学怀廷工程学院,美国马里兰州巴尔的摩 21218 9 洛克菲勒大学细胞与结构生物学实验室,美国纽约州纽约 10065 10 格罗宁根大学医学中心欧洲老龄化生物学研究所,荷兰格罗宁根 11 哈佛医学院麻省总医院病理学系,美国马萨诸塞州波士顿 02114 12 约翰霍普金斯大学医学院医学系/传染病科,美国马里兰州巴尔的摩 21205 13 约翰霍普金斯大学医学院高通量生物学中心,美国马里兰州巴尔的摩 21205 14 斯坦福大学斯坦福基因组技术中心,美国加利福尼亚州帕洛阿尔托 94304 15 斯坦福大学医学院遗传学系,美国加利福尼亚州斯坦福 94305 16 纽约大学生物医学工程系Tandon 工程学院,纽约布鲁克林 11201,美国 17 现地址:欧莱雅研究与创新,新泽西州克拉克 07066,美国 18 现地址:Pondicherry Biotech Private Limited,Pondicherry 工程学院校区,East Coast Road,Pillaichavady,Puducherry 605014,印度 19 现地址:哈佛大学陈曾熙公共卫生学院生物统计学系,马萨诸塞州波士顿 02115,美国 20 现地址:Neochromosome,Inc.,纽约长岛市 11101,美国 21 现地址:科学与工业研究中心,基因组学与综合生物学研究所,Sukhdev Vihar,Mathura Road,新德里 110025,印度 22 这些作者贡献相同 23 主要联系人 * 通讯:weimin.zhang@nyulangone.org (WZ),jef.boeke@nyulangone.org (JDB), chandra@jhmi.edu (SC)
我们研究了美国移民政策和互联网热潮不仅影响了美国,还导致了印度的科技热潮。印度的学生和工人掌握了计算机科学技能,加入了迅速发展的美国 IT 行业。由于美国签证数量受到限制,许多人留在了印度,推动了印度 IT 行业的增长,最终在 IT 出口方面超过了美国。我们利用移民配额的变化和美国对移民的需求来表明,当移民美国的可能性更高时,印度经历了“人才回流”。利用有关高等教育、校友网络和高技能工人工作经历的详细数据,我们表明美国 H-1B 上限的变化导致了印度学习领域和职业选择的变化。然后,我们建立并估计了一个定量模型,该模型结合了两国的移民、异质能力、贸易、创新和动态职业选择。我们发现,高技能移民提高了每个国家工人的平均福利,但产生了分配后果。 H-1B 计划促使印度人转向计算机科学职业,并推动 IT 生产从美国转移到印度。我们表明,考虑内生技能获取是量化移民收益的关键。