自 20 世纪 70 年代初以来,选择性催化还原 (SCR) 已应用于固定源、化石燃料燃烧装置的排放控制,目前已在日本、欧洲和美国投入使用。该技术已应用于大型(2.5 亿美元英热单位/小时 (MMbtu/hr))公用事业和工业锅炉、工艺加热器和联合循环燃气轮机。SCR 在其他燃烧设备和工艺中的应用有限,例如简单循环燃气轮机、固定往复式内燃机、硝酸厂和钢厂退火炉 [4]。在美国,SCR 主要应用于燃煤和天然气发电锅炉,规模从 250 到 8,000 MMbtu/小时(25 到 800 兆瓦 (MW))。SCR 可以作为独立的 NOx 控制装置使用,也可以与其他技术(如燃烧控制)一起使用。SCR 系统很少出现运行或维护问题 [1]。
•低TRL分析•质量和能量平衡•初步电子表格模型 - 后燃烧工具,压缩工具•成本相关性•中至高的TRL(用于NETL项目)•过程仿真软件•ASPEN PLUS•CHEMCAD•THERMCAD•THELMOFLOW•其他
本审查论文对碳捕获和存储(CCS)技术的最新发展进行了全面分析,特别关注两种突出的碳捕获方法:直接空气捕获(DAC)和后燃烧捕获(PCC)。本文探讨了与这些方法相关的基本原则,技术进步和当前的挑战。此外,它探讨了用于储存碳碳的各种技术,强调了碳固执的重要性。本文的第一部分阐明了DAC背后的原理,强调了其潜力是降低大气二氧化碳水平的直接可扩展解决方案。本文的第二部分侧重于碳储存技术,强调了碳固存在缓解气候变化中的关键作用。关键词:碳,碳捕获和存储(CCS),直接空气捕获(DAC),燃烧后捕获(PCC),碳固存,缓解气候变化1.简介:
随着世界朝着更多的工业领域脱碳,CCS将在减少没有可再生替代方案的各种行业的碳足迹方面发挥至关重要的作用。水泥制造是这样的行业,因为CO 2排放量的三分之一是由石灰石的化学转化造成的,这是水泥制造过程中无法改变的关键步骤。目前在水泥厂上没有商业规模的CCS设施。这项研究中考虑的水泥设施每年发射600,000-750,000吨的CO 2,同时产生800,000 - 1,000,000吨的熟料。本文所述的热量恢复调查是国际CCS知识中心的前可行性研究工作的一部分,旨在改造具有完整规模的水泥生产设施,后燃烧后,基于胺的CO 2捕获系统。
准确的胺属性预测对于优化后燃烧过程中的CO 2捕获效率至关重要。量子机学习(QML)可以通过利用叠加,纠缠和干扰来捕获复杂相关性来增强预测性建模。在这项研究中,我们开发了杂交量子神经网络(HQNN),以改善CO 2接制胺的定量结构 - 性质关系模型。通过将变异量子回归器与经典的多层感知器和图形神经网络相结合,在无噪声条件下的物理化学属性预测中探索了量子优势,并使用IBM量子系统评估了针对量子硬件噪声的鲁棒性。我们的结果表明,HQNNS提高了关键溶剂特性的预测准确性,包括碱度,粘度,沸点,熔点和蒸气压。具有9个Quarbits的微调和冷冻预训练的HQNN模型始终达到最高排名,突出了将量子层与预验证的经典模型相结合的好处。此外,硬件噪声下的模拟证实了HQNN的鲁棒性,以保持预测性能。总体而言,这些发现强调了分子建模中杂交量子古典体系结构的潜力。随着量子硬件和QML算法继续推进,QSPR建模和材料发现中的实用量子益处有望变得越来越可实现,这是由量子电路设计,降解噪声和可扩展体系结构的改进而驱动的。
PETRA NOVA项目是一个商业量表后燃烧后碳捕获项目,利用先进的基于胺的吸收技术从NRG Energy AT NRG Energy,Inc。W.A.A.'S. W.A.A.'s W.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.AS。 教区发电站(碳捕获设备(CCE))。 CCE位于德克萨斯州休斯敦的西南部,位于德克萨斯州汤普森镇的本德堡县农村。 每天捕获的CO 2每天高达4,717公吨(5,200吨短吨),正在通过81英里的管道干燥,压缩和运输到德克萨斯州杰克逊县(West Ranch)的West Ranch油田,在那里它用在Co 2增强的油回收(EOR)操作中。 Petra Nova Parish Holdings LLC(PNPH)通过其全资子公司Petra Nova CCS I LLC拥有CCE。 PNPH是NRG Energy,Inc。(NRG)和JX Nippon石油和天然气勘探公司(JX)之间的合资企业。教区发电站(碳捕获设备(CCE))。CCE位于德克萨斯州休斯敦的西南部,位于德克萨斯州汤普森镇的本德堡县农村。每天捕获的CO 2每天高达4,717公吨(5,200吨短吨),正在通过81英里的管道干燥,压缩和运输到德克萨斯州杰克逊县(West Ranch)的West Ranch油田,在那里它用在Co 2增强的油回收(EOR)操作中。Petra Nova Parish Holdings LLC(PNPH)通过其全资子公司Petra Nova CCS I LLC拥有CCE。PNPH是NRG Energy,Inc。(NRG)和JX Nippon石油和天然气勘探公司(JX)之间的合资企业。
生物量在使可再生能源主流化的领先地位,甚至比太阳能印度尼西亚(Perusahaan listrik negara,2021年)更重要的是Perusahaanlistrik negara(PLN)目标18,895 MW在52个位置的114个燃烧电源工厂中的共同射击能力1895兆瓦的能力。目前,生物质联合试点项目已在32个地点使用5%的生物质燃料(棕榈仁壳,木材颗粒)实施。预计该计划的未来扩展将包括由独立发电商拥有和经营的燃煤电厂。设计在2025年后将开始运营的新燃煤发电厂的设计至少为30%的生物质燃料。越南(Barnes,2023; Bich,2023年)越南政府于2023年5月15日发布的电力开发计划8要求煤炭发电厂在运营20%后燃烧生物质和氨燃料,起价20%,起到20%,并增加到100%,随着该国逐步淘汰煤炭,以2050年逐步淘汰煤炭。到2030年,计划达到2,270兆瓦的生物质和废物到能量植物的合并能力,目的是到2050年增加到6,015兆瓦。生物质来源:渣酱,稻草,稻壳,咖啡壳,椰子壳和马来西亚锯末国家能源过渡路线图(经济部,2023年)具有六个能源过渡杠杆,其中包括生物能源。它将涉及2024年在退出的2,100 MW Tanjung Bin发电厂在退出的生物质聚类和驾驶生物质,以至于2027年至少缩放生物量的共同产能。生物质来源:棕榈为空的水果束颗粒,木屑,木材颗粒,竹子颗粒,椰子壳和稻壳。菲律宾据报道,2019年356兆瓦的生物量功率能力在4,400兆瓦时的潜在容量(DIA,2023)Tabasse用作锅炉燃料的锅炉燃料;大米和椰子壳干燥机,用于作物干燥;用于机械和电气应用的生物量气体。烤箱和农业废物的烤箱窑炉;炉子和烹饪炉,用于烹饪和加热目的。这些生物质技术装置的容量高于其他可再生能源或节能和温室气体减肥技术的能力(Shead,2017)。生物量来源:稻壳,稻草,椰子壳,椰子壳,香蕉,菠萝和新加坡一般的新加坡没有农业和林业领域,而是通过园艺生物量和浪费性来追求生物质发电。树枝,叶子和草皮在海湾和宫岛的花园中燃烧用于能源生产。宫岛共同燃烧煤的Tembusu多实施综合体(TMUC)(即低灰分和低硫)和生物量以低排放产生蒸汽和电。总输出为134兆瓦。(Tan,2023; Gan,2022)