2021年3月2日对死亡进行调查,并于2月24日在EPS拘留期间,艾伯塔省严重的事件响应小组(ASITT)被指示调查一名43岁男子死亡的情况,该男子在与埃德蒙顿警察局(EPS)和医院和平人员接触期间死亡,此外还有医疗人员。2月23日,警方在呼吁骚扰后回应了一处住所。官员处理了这名43岁的男子,此事未经指控就解决了,没有事件。2月24日下午12:22左右,EPS警察和危机小组(PACT)的成员参加了该男子的位置,以进行后续工作并进行幸福检查。PACT是一个综合部门,包括由EPS雇用的警察和由Alberta Health Services(AHS)雇用的精神卫生工作者。根据他们收到的信息和对男人行为的观察,警方根据《心理健康法》的规定逮捕了该人,将他转交给医院进行进一步评估和治疗。逮捕毫无意义。下午1:27左右,官员将这名男子运送到皇家亚历山德拉医院(RAH),该男子被安置在急诊室的安全房间,以进行进一步评估和治疗。在拉赫(Rah)时,医院工作人员要求警察帮助他们将男子移至另一个单位的另一个安全房间。在下午2:22左右,当他们进入安全的房间将男子转移到另一个单位时,该男子,三名EPS官员和工作人员之间发生了身体上的争执,包括三名安全和平官员。在事件发生期间,一名警官部署了执行的能量武器(CEW)。一旦他们对男子的足够控制,医务人员就接受了药物治疗。此后不久,该男子变得无反应,尽管立即提供了紧急医疗,但该男子无法复活并被宣布死亡。可能会要求调查警察行为可能造成或造成严重伤害或死亡的任何事件。此外,当一个人在警察拘留期间遭受严重伤害或死亡时,即使事件发生在医院中,它也被认为是严重的,并且可能需要进行独立的调查来确定警察是否造成严重伤害或死亡,如果是这样,则相关人员是否在其律师权中行事,并在其律师事务中处于律师事务中。一个广泛定义的事件被广泛定义为一个人被捕,被捕,现场包含或拘留在监护环境中,或者警察有能力和/或权力控制一个人的运动。命令调查时,这反映了一个人在警察拘留期间死亡的情况的重力,不应将其解释为表明在调查开始时有一种信念,警方的行为不当。调查旨在提供对
各种方法开发了3D综合的深度神经网络架构[Chaudhuri等。2020; Patil等。2020; Shi等。2023; Xu等。2023]。尽管这些方法可以捕获各种宏观的外观,但它们很少明确地模型形状的结构或拓扑结构,而是依靠网络的代表力来生成可见的看起来可见的体素电网[Liu等。2017],点云[Achlioptas等。2018a],网格[Dai和Nießner2019]或隐式领域[Chen and Zhang 2019]。与2D图像生成网络相比,由于3D网络被额外维度所带来的其他资源开销所阻碍,因此它们通常很难建模精细的细节和连接性。某些方法模型零件布局[Li等。2017],但在它们可以产生的结构的复杂性上受到限制。同时,这些先前的3D合成方法很少使艺术家灵活,精确地控制。它们更充当非有条件生成的黑匣子,或者通过图像或3D扫描重建。最新方法基于文本提示引入合成[Lin等。2023; Poole等。2023],取得了显着的结果,但仅通过及时工程进行全球控制。3D角色艺术家长期以来一直习惯于摆姿势钻机以进行准确的角色配置。然而,这种直接的局部控制和通过直观的抽象的可解释性在一般3D形状合成中的成功限制。背面有特定板条配置的椅子。没有明确结构建模的方法缺乏指定特定所需拓扑的能力,例如另一方面,进行模型零件级结构的方法仅限于由一些粗制的拓扑定义的简单拓扑结构,并且无法对复杂的FRETWORK或装饰进行建模。我们对现实的3D形状生成感兴趣,该生成能够准确地模拟复杂的拓扑和几何细节,并支持对形状结构和几何形状的更可解释的控制。为实现这一目标,我们基于三个关键见解:(1)拓扑细节通常可以在“骨骼抽象”中捕获,就像内侧轴变换获得的那样[Tagliasacacchi等。2016],即使没有有意义的部分分解,它也可以作为形状的简化结构代理。 (2)这些抽象可以通过生成方法合成[Karras等。2022],由稀疏点云预测[Nie等。2020; Yin等。2018],或由艺术家手动创建,而不必是完美的,因为它们是模仿中间表示; (3)每个抽象可以通过另一个训练有素的模型将每个抽象解码为逼真的表面。我们的方法通过推出并组装了以骨骼抽象为条件的局部支持的神经隐式功能来实现表面生成步骤。我们从该领域的最新工作中汲取了证明,该研究将潜在代码与稀疏集中的每个3D点相关联,并从潜在网格中生成局部隐含[Zhang等。2022]。但是,先前工作中稀疏的点支持集往往是任意的,而不是很容易解释。与单个大隐含物相比,这些不合格的混合物定义了整体合成形状,并可以更好地生成细微的几何细节。基于3D神经场和跨注意的后续工作[Zhang等。2023]完全在潜在网格上滴显式空间接地。相比之下,我们的基于骨架的潜在网格更具结构感知,为3D空间中的潜在代码提供了可解释的支持,同时仍然能够代表复杂的,细粒度的拓扑结构。我们总结了我们的贡献如下:
Tellus 是爱尔兰的一项国家航空地球物理测绘计划,是 2005-2006 年北爱尔兰 Tellus 调查的后续工作,首次调查于 2011 年在爱尔兰进行。从那时起,年度调查区块一般都向南延伸至全国。Tellus 计划的最新阶段收集了南爱尔兰(蒂珀雷里郡、基尔肯尼郡、莱伊什郡和沃特福德郡)和科克郡两个新区块(A8 和 A9)的航空数据,分别称为 A8 区块和 A9 区块。Sander Geophysics Ltd (SGL) 于 2020 年 9 月 20 日至 2021 年 7 月 15 日(A8)和 2021 年 7 月 25 日至 2021 年 9 月 21 日(A9)期间进行了调查。此前,在 2005 年和 2006 年,在北爱尔兰(Tellus)地区(Beamish 等,2006 年)、爱尔兰共和国卡文郡和莫纳汉郡的部分地区(Kurimo,2006 年)、作为欧盟 INTERREG IVA 资助的 Tellus 边境项目的一部分的多尼戈尔郡、利特里姆郡、斯莱戈郡、卡文郡、莫纳汉郡和劳斯郡(Hodgson 和 Ture,2012 年)、作为 Tellus 北米德兰兹项目的一部分的罗斯康芒郡、朗福德郡和韦斯特米斯郡(Hodgson 和 Ture,2015 年)、在该国东部的米斯郡、都柏林郡、基尔代尔郡、奥法利郡、莱伊什郡和威克洛郡(A1 区块)的部分地区(Hodgson 和 Ture,2016 年)以及爱尔兰2016 年在戈尔韦 (A2 区块) (Hodgson 和 Ture,2017 年) 和 2017 年在梅奥郡和多尼戈尔郡 (A3 和 A4 区块) (Hodgson 和 Ture,2018 年) 进行,2018-2019 年在利默里克郡和科克西部 (A5 和 A6 区块) (Hodgson、Ture 和 Muller,2019 年) 进行,2019 年在韦克斯福德郡、威克洛郡、基尔代尔郡和卡洛郡 (A7 区块,爱尔兰东南部) 进行。最新阶段的航空勘测,A8 和 A9 区块由驻扎在沃特福德机场的同一架飞机执行。所有勘测都测量了磁场、电导率和伽马射线光谱仪数据(主要是钾、钍和铀)。本报告总结了最新 A8 和 A9 勘测的主要操作,并讨论了获取的数据的处理及其与现有数据集的合并以生成无缝合并的地球物理数据集。A6 区块(科克西部)与 A9 有少量重叠,并包含在当前数据的合并中。然而,预计在完成后续勘测区块后,A6 将能够进行更好的约束合并,这将与 A6 提供更大的重叠。以下 SGL 数据交付编号分别提供了 A6、A8 和 A9 区块的合并数据;磁学数据:DLV2160、DLV2420、DLV2554;放射性测量数据:DLV2161、DLV2419、DLV2433;电磁学数据:DLV2159、DLV2421、DLV2439。致谢 在调查过程中,GSI 的 Emma Scanlon 和 Margaret Browne 以及公关公司 RPS 帮助成功开展了外展计划。感谢 SGL 的工作人员在整个调查期间的辛勤工作。
目录 目录 v 图片列表 xi 表格列表 xv 致谢 xvii 简介 1 什么是仓库?1 01 5 仓库的作用 5 简介 5 仓库操作的类型 7 我们为什么要持有库存?12 仓库位置 16 仓库数量 20 影响仓库的供应链趋势 21 电子履行的增长及其对仓库的影响 22 专业仓储 24 总结和结论 34 02 36 仓库经理的角色 36 简介 36 仓库权衡 38 仓库经理面临的挑战 39 精益仓储 43 人员管理 47 人员挑战 47 吸引和留住仓库员工 51 老龄化和不断变化的劳动力 52 营业时间 53 培训 55 仓库审计 56 质量体系 56 总结和结论 57 03 58 仓库流程:收货和入库 58 简介 58 收货 60 预收货 60 进货 66 准备 66 卸货 67 检查 70 交叉对接 73 记录 74 质量控制 74入库 74 总结和结论 76 04 77 仓库流程:拣货准备 77 介绍 77 准备 79 仓库拣货区域布局 90 总结和结论 93 05 95 拣货策略和设备 95 介绍 95 拣货员到货物 98 货物到拣货员 103 自动拣货的类型 105 自动拣货系统示例 106 搬运设备 119 存储设备 124 总结和结论 132 06 138 订单拣货方法 138 介绍 138 纸质拣货单 138 按标签拣货 139 语音拣货 139 条形码扫描 146 射频识别 151 按灯拣货/按灯拣货 152 按灯放置 156 比较 157 错误成本 160 确定拣货系统和设备的类型 165 总结和结论 167 07 168补货到发货及后续工作 168 简介 168 补货 168 增值服务 169 间接活动 170 库存管理 171 库存或库存盘点 173 循环盘点或永久盘点 174 盘点本身 175 安全 176 退货处理 177 发货 181 司机的角色 186 总结和结论 187 08 188 仓库管理系统 188 简介 188 为什么公司需要 WMS?294 我们应该测量什么?189 选择 WMS 191 流程 191 选择正确的 WMS 192 在系统中寻找什么 195 选择合作伙伴 197 在做出最终决定之前 198 实施 198 软件即服务 199 云计算 200 总结和结论 201 09 203 仓库布局 203 简介 203 数据收集和分析 205 空间计算 207 过道宽度 213 其他空间 214 仓库布局示例 215 寻找额外空间 217 总结和结论 219 10 220 存储和搬运设备 220 简介 220 存储设备 220 存储选项 221 与众不同的穿梭车技术 231 超高货架仓库 232 其他存储介质 236 仓库搬运设备 239 垂直和水平移动 242 自动存储和检索系统 (AS/RS) 250 专用设备 252 最新技术进步 253 总结和结论 254 11 255 仓库资源配置 255 简介 255 加工活动 256 其他因素 274 总结和结论 275 12 276 仓库成本 276 简介 276 成本类型 277 投资回报率 (ROI) 280 传统成本核算系统与基于活动的成本核算系统 280 共享用户仓库服务收费 285 物流收费方法 290 混合 292 总结和结论 292 13 293 绩效管理 293 简介 293 我们为什么需要测量?294 如何选择正确的绩效衡量标准 299 传统生产力衡量标准 301 新绩效指标 304 硬指标和软指标 306 综合绩效模型 307 基准测试 309 平衡记分卡 312 总结和结论 315 14 316 外包 316 简介 316 外包决策 317 核心活动/核心竞争力 320 客户服务改进 321 成本降低 321 劳资关系 321 财务战略 322 灵活性 322 第三方承包商的作用 323 准备外包 323 选择合适的合作伙伴 325 过渡 328 管理第三方关系 328 合同失败的原因 328 外包的未来 331 总结和结论 337 15 338 健康与安全 338 简介 338 风险评估 341 布局与设计 345 消防安全349 滑倒和绊倒 351 人工搬运 352 高空作业 352 车辆 353 叉车 354 仓库设备法规 356 急救 357 总结和结论 357 16 359 仓库和环境 359 简介 359 法规和其他压力 361 仓库能源使用 361 能源生产 367 环境和废弃物 369 包装 370 托盘 371 拉伸包装 372 纸箱 372 标签 372 产品废弃物 373 废弃物处理 373 危险废弃物 373 叉车 373 总结和结论 374 17 375 未来的仓库 375 简介 375 背景 375 未来视角:景观 377 未来视角:仓库 380 其他进展 384 总结和结论 385 附录一 387 更多信息 402 参考文献 402 附录二 403 更多信息 405 参考文献 405 参考文献 406 有用网站 411 词汇表 413 索引 419