简介:俯仰是一种全身运动,涉及人体段的顺序旋转,导致释放时的球速度接近最大(Pappas等,1985)。人体与地面之间的相互作用对于俯仰生物力学至关重要(MacWilliams等,1998)。我们在这项研究中的目的是确定每条腿在释放球前产生线性和角度脉冲中的作用。每条腿在棒球投球中的作用已经长期存在。Elliot等。 (1988)建议,后腿向前驱动身体,而前腿为骨盆和躯干提供了稳定的底座。 MacWilliams等。 (1998)发现,前腿是将“向前和垂直动量转变为旋转组件”的“锚”。 使用能量流分析,Howenstein等。 (2020)建议,后腿推进动力学有助于传递线性力量,而前腿制动动力学会产生旋转力。 尽管峰值地面反作用力(GRF)值与俯仰速度有关(Elliot等,1988; McNally等人,2015年,Macwilliams等,1998),仅在grf方面提供了有限的地面相互作用的视图,并且在球场上如何调节身体的线性和角度和角度的角度(McNelly and McNally and and and and and and and and and and and。 虽然在俯仰期间观察到骨盆和躯干的片段旋转,但后腿和前腿在俯仰上在俯仰期间产生COM的角脉冲的相对贡献在很大程度上是未知的。 (2018)。Elliot等。(1988)建议,后腿向前驱动身体,而前腿为骨盆和躯干提供了稳定的底座。MacWilliams等。(1998)发现,前腿是将“向前和垂直动量转变为旋转组件”的“锚”。使用能量流分析,Howenstein等。(2020)建议,后腿推进动力学有助于传递线性力量,而前腿制动动力学会产生旋转力。尽管峰值地面反作用力(GRF)值与俯仰速度有关(Elliot等,1988; McNally等人,2015年,Macwilliams等,1998),仅在grf方面提供了有限的地面相互作用的视图,并且在球场上如何调节身体的线性和角度和角度的角度(McNelly and McNally and and and and and and and and and and and。虽然在俯仰期间观察到骨盆和躯干的片段旋转,但后腿和前腿在俯仰上在俯仰期间产生COM的角脉冲的相对贡献在很大程度上是未知的。(2018)。Yanai等人已经计算出身体围绕垂直轴的角度动量。但是,对沥青生物力学的影响需要进一步的解释。了解每条腿如何有助于净线性冲动和净角度冲动,预计将提供有意义的见解个人在球场期间用来调节线性和角度动量的策略。我们假设后腿负责从土丘到本垒板产生前向线性冲动,并且前腿负责产生向后线性冲动,净线性脉冲产生了身体水平动量向本垒板的增加。相反,我们假设前腿产生的GRF会导致对通过COM从Mound到第一垒的水平轴更大的角度冲动,而不是后腿。
摘要 人们普遍认为,投棒球时传递到球的大部分能量是由躯干和下肢产生的。因此,本研究的目的是评估投棒球时流经下肢的能量。假设(稳定的)前腿主要以从远端到近端的顺序作为动力链传递能量,而(驱动的)后腿产生大部分能量,主要在臀部。使用关节功率分析来确定 22 名青年投手的踝关节、膝盖、臀部和腰骶关节(L5-S1)的能量(功率)传递和产生率。分析表明,前腿主要在跨步脚接触之前以从远端到近端的顺序向上传递能量。此外,后腿产生的能量更高,主要来自后臀部。总之,双腿对能量流的贡献不同,其中前腿充当初始动力链组件,后腿通过产生能量来驱动俯仰。双腿的动作在骨盆中结合,并传递到后续更常讨论的开放动力链,从 L5-S1 开始。
一种动力下肢外骨骼包括 ReWalk™ Personal 6.0(ReWalk Robotics)和 Indego®(Parker Hannifin),可根据姿势信息提供用户启动的移动性。站立、行走、坐下和上下楼梯模式由腕带上的模式选择器决定。ReWalk™ 包括一系列传感器和专有算法,可分析身体运动(例如躯干倾斜)并操纵电动腿部支架。倾斜传感器用于向机载计算机发出信号,告知何时采取下一步行动。使用动力外骨骼的患者必须能够使用前臂拐杖或助行器用手和肩膀保持平衡。使用 ReWalk™ [1] 行走的说明是将拐杖放在身体前方,然后稍微弯曲肘部,将重量移向前腿,向前腿侧倾斜。后腿将稍微抬离地面,然后开始向前移动。使用拐杖伸直后腿可以继续向前移动。另一条腿重复此过程。
“Nomad”深受那些参观过 Paleface 牧场并见过它的养牛人的喜爱,它的后代被广泛用于他们的育种计划。它是“Tippu”的儿子,而“Tippu”的母牛含有 75% 的进口公牛“Quinca”的血统,Quinca 是另一头出色的婆罗门牛,尽管它很早就死了。Nomad 本身体型低矮,腰部很深,后腿延伸到飞节,顶线和底线笔直。虽然它不是一头大公牛,但它的体重范围为 1600 磅,身体各处保持完美平衡,简而言之,它接近理想的牛肉型婆罗门牛。
1。退化性骨髓病是一种无法治愈的疾病,不幸的是,脊髓和最终瘫痪的恶化缓慢。2。不幸的是,这种疾病无法治愈,但已显示出强烈的物理疗法可以减缓进展。3。例如,某些网站推荐的补充剂(例如,氨基酸酸和二乙酰半胱氨酸)在临床和研究中都显示出无效的补充。因此不建议它们。解释:退化性骨髓病(DM)是一种通常在中年诊断为年龄较大的狗的疾病。任何狗都会患上退化性的脊髓病,但是与其他狗相比,德国牧羊犬,拳击手,罗得西亚山脊,切萨皮克湾猎犬和科长似乎有增加患病的风险。当这种疾病发生在柯基氏症中时,它往往会在以后的生活中出现(发病时期的平均年龄为11岁)。在DM中,脊柱中的神经纤维称为轴突。该过程类似于人类病肌萎缩性的侧面硬化症或ALS,也称为Lou Gehrig病。我们不知道是什么原因导致这种轴突死亡,但它与遗传缺陷有关(SOD1突变)。有针对此突变的测试,在诊断部分中进行了进一步讨论。症状的进展:在早期阶段,狗的后腿将不协调。他们可能会绊倒脚或擦脚趾指甲。随着这种情况的进行,他们可能站在脚的顶部,或者双腿在行走时可能会交叉并纠结。The disease is not painful.在6到12个月的时间内,患有骨髓病变的狗会在后腿瘫痪。这种疾病在科长中的移动趋势较慢,瘫痪时间平均为19个月。通常会逐渐发生瘫痪,但是有些狗会显示出“楼梯步骤”模式,在这种情况下它们长时间稳定,功能突然下降。随着狗的后腿瘫痪,它们也会失去膀胱和肠道控制,从而导致尿失禁。失禁的狗将需要帮助清空膀胱。如果您的宠物需要帮助,则需要表达狗的膀胱(请您的兽医提供有关此过程的说明)。有些人在不再走路时对宠物实施安乐死。其他人选择让狗适合轮椅。决定安乐死或将狗放在轮椅上的决定是一个非常个人的。与您的兽医谈谈您的处境以及您和您的狗的感觉。
将小鼠分组(n=4),在右后腿肌肉注射HBsAg、HBsAg/Al或HBsAg/HPLNP(w/w=1/600)制剂,剂量为1 µg HBsAg/只小鼠。肌肉注射后,在12、24、48和72小时通过体内成像系统FX Pro(Kodak)采集注射部位的荧光图。在不同时间点获得各组小鼠注射部位的平均荧光强度图。肌肉注射后,在12、24、48和72小时采集肠系膜淋巴结的荧光信号。计算不同组别的注射部位和肠系膜淋巴结的平均荧光强度,以比较各种疫苗制剂在抗原储存效应和淋巴结引流方面的效果。2.9 淋巴结中淋巴细胞的激活
本报告介绍了卵子股骨(大腿骨)的结构特征(明显和秘密)。绵羊模型通常在骨骼研究中使用,因为它与人类相似1。成熟的母羊的体重在50-80千克之间变化,后腿关节的大小约为人类同源关节的2/3。股骨是后肢骨骼的近端部分;它与骨盆近端表达,并与胫骨和the骨远端表达。静止绵羊中股骨的取向是屈曲(倾向于腹部),因此与通常在人类中通常观察到的股骨方向不同。卵股骨通常也比成年人类股骨短两倍。本报告中分析的右股骨是从当地的屠夫那里获得的,它起源于完全生长的动物,但品种和性别未知。样品的尺寸约为200毫米,轴区域(隔膜)的直径为20 mm,在近端和远端末端的最大尺寸(phickyses)的最大尺寸中约为40 mm。大多数动物的同源骨骼元素通常共享相同的“设计计划”,并且可以轻松地识别其解剖学特征。下面说明了该股骨的主要解剖标志。请注意,可以在人类或其他哺乳动物的股骨上识别相同的地标。
抽象目标:事先研究证明了用于确定乳腺肿瘤患者治疗反应的定量超声(QU)的实施。从肿瘤区域定量的几个QU参数与患者的临床和病理反应显着相关。在这项研究中,我们旨在确定是否存在使用乳腺异种移植模型(MDA-MB-231)的超声刺激的微泡(USMB)和高温(HT)引起的QUS参数与肿瘤形态变化之间存在这种联系。方法:用USMB和HT的排列处理严重合并免疫兼具小鼠的后腿生长的肿瘤。使用25 MHz阵列换能器从乳腺肿瘤的小鼠之前和24小时治疗中收集超声射频数据。Result: Our result demonstrated an increase in the QUS parameters the mid-band fi t and spectral 0-MHz intercept with an increase in HT duration combined with USMB which was found to be re fl ective of tissue structural changes and cell death detected using haematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labelling stain.在60分钟的HT持续时间内观察到了QUS光谱参数的显着降低,这可能是由于大多数细胞损失了核的损失,因此使用组织学分析确认。肿瘤内的形态改变可能导致反向散射参数的减少。结论:这里的工作使用QUS技术来评估癌症治疗的效率,并表明超声反向散射的变化反映了组织形态的变化。
介入放射学在过去几十年中已大大增长,并成为治疗或诊断的重要工具。这项技术主要是有益的,而且掌握了,但可能会发生意外暴露,并导致确定性效应的出现。缺乏对用于这些实践的低能X射线的放射生物学后果的知识,这使得对不同组织的预后非常不确定。为了改善患者的辐射保护并更好地预测并发症的风险,我们实施了一种新的临床前小鼠模型来模仿介入放射学中的放射学燃烧,并对剂量沉积进行了完整的表征。设计了一种新的设置和准直仪,可在80 kV的空气中照射15只小鼠的后腿。辐照后,收集小鼠胫骨以通过电子顺磁共振(EPR)光谱测量来评估骨剂量。在简化和体素化的幻像中进行了带有Geant4的Monte Carlo模拟,以表征不同组织中的剂量沉积,并评估次级电子(能量,路径,动量)的特征。收集了30只小鼠胫骨进行EPR分析。在骨最初在30 Gy的骨中测量了平均剂量为194.0±27.0 Gy。确定空气转化因子为6.5±0.9。样本间和间小鼠的变异性估计为13.9%。蒙特卡洛模拟显示了这些低X射线能量的剂量沉积的异质性和密集组织中的剂量增强。研究了二级电子的特定性,并显示了组织密度对能量和路径的影响。获得了实验和计算出的骨与空气转化因子之间的良好一致性。实施了一种新的临床前模型,允许在介入放射学条件下进行放射学燃烧。对于开发新的临床前放射生物学模型,其中沉积在不同组织中的剂量的确切知识至关重要,蒙特卡洛模拟的互补性和对剂量表征的实验测量结果已被证明是相当大的资产。