摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为了避免非线性动态函数的线性化,并获得更准确的机动目标估计,提出了一种用于机动目标跟踪的新型自适应信息加权共识滤波器。利用无味变换计算伪测量矩阵,以利用测量的信息形式,这是共识迭代所必需的。为了提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在每个动态模型的相邻节点之间应用信息加权共识协议。基于多个模型的后验概率,通过模型条件估计的加权组合获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网络估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,利用测量的信息形式,为协同迭代提供必要的信息。为提高机动目标跟踪精度,并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过模型条件估计的加权组合获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优越的性能。
由于浮点运算需要大量资源,使用传统计算范式在贝叶斯网络中实现推理(即计算后验概率)在能源、时间和空间方面效率低下。脱离传统计算系统以利用贝叶斯推理的高并行性最近引起了人们的关注,特别是在贝叶斯网络的硬件实现方面。这些努力通过利用新兴的非易失性设备,促成了从数字电路、混合信号电路到模拟电路的多种实现。已经提出了几种使用贝叶斯随机变量的随机计算架构,从类似 FPGA 的架构到交叉开关阵列等受大脑启发的架构。这篇全面的评论论文讨论了考虑不同设备、电路和架构的贝叶斯网络的不同硬件实现,以及解决现有硬件实现问题的更具未来性的概述。
在可盖实验的鲁棒参数设计中,每个块内响应观测值的相关性和模型参数不确定性通常会影响获得理想的工作条件。在本文中,建议基于贝叶斯混合回归的多响应表面建模和优化方法来解决上述问题。首先,混合效应模型被合并到贝叶斯框架中,并使用贝叶斯定理得出模型参数的后验分布。其次,使用混合蒙特卡洛算法来计算模型参数。第三,构建满足规范的预期质量损失函数是为了减少异常值对优化结果的影响,并且通过混合遗传算法获得了最佳因素设置。此外,后验概率用于评估优化结果的符合性。最后,使用添加剂制造过程的模拟研究和现实世界示例来说明该方法的生存能力。与当前技术相比,所提出的方法可以减少模型不确定性对建模和优化结果的影响,从而导致更合适和强大的优化结果。
摘要 — 描述图像的视觉语义内容是提高场景图像识别效果的有效而直接的方法。语义多项式 (SMN) 表示就是这样一种表示,它使用概念的后验概率来捕获语义信息。获取 SMN 表示的核心部分是构建概念模型。为了构建概念模型,必须为图像中存在的每个概念提供基本事实 (真实) 概念标签。由于数据集中的图像数量众多,因此手动标记概念实际上不可行。在这项工作中,我们提出了一种在没有真实概念标签的情况下选择伪概念的方法。我们建议使用弱监督伪概念建模生成一种基于深度 CNN 的新型 SMN 表示。在这种方法中,来自更深的卷积层的激活图(过滤响应)被视为伪概念的线索。我们建议使用伪概念类数据的子空间分析来对相似的伪概念进行分组。在 MIT67 和 SUN397 等标准数据集上研究了所提出方法在场景识别任务中的有效性。
摘要 —描述图像的视觉语义内容是提高场景图像识别能力的一种有效而直接的方法。语义多项式 (SMN) 表示就是这样一种表示,它使用概念的后验概率来捕获语义信息。获取 SMN 表示的核心部分是构建概念模型。为了构建概念模型,必须为图像中存在的每个概念提供基本事实 (真实) 概念标签。由于数据集中的图像数量众多,因此手动标记概念实际上不可行。在这项工作中,我们提出了一种在没有真实概念标签的情况下选择伪概念的方法。我们建议使用弱监督伪概念建模来生成一种基于深度 CNN 的新型 SMN 表示。在这种方法中,来自更深的卷积层的激活图(过滤器响应)被视为伪概念的线索。我们建议使用伪概念类数据的子空间分析来对相似的伪概念进行分组。在 MIT67 和 SUN397 等标准数据集上的场景识别任务中研究了所提出方法的有效性。
ACM 自适应编码和调制 ACQ 采集突发 AES 航空地球站 AGAC 自动增益和角度控制 AMSS 航空移动卫星服务 APP 后验概率 ATM 异步传输模式 AWGN 加性高斯白噪声 BSS 广播卫星服务 BTP 突发时间计划 BW 带宽 CAC 连接准入控制 CCM 恒定编码和调制 CMF 控制和监控功能 CRA 恒定速率分配 CSC 公共信令信道 DAMA 按需分配多址接入 D-GPDI 差分广义后检测集成 DS 直接序列 ECN 显式拥塞通知 FCT 帧组成表 FDT 前向纠错数据表 FEA 功能实体动作 FIP 前向交互路径 FL 前向链路 FLS 前向链路信令 FLSS 前向链路子系统 FMT 衰落缓解技术 FS 固定服务 FSS 固定卫星服务 GPDI 广义后检测集成 GS 通用流 GSE 通用流封装 HO 切换 IBR 带内请求
常见的通用分割方法会因照明突然变化而受阻。由于打开灯而导致的亮度显著增加以及物体投射的阴影通常会导致这些方法产生错误的分类。为了实现照明不变分割,本文讨论的共线向量模型从局部像素邻域构建 RGB 颜色向量。亮度变化只会对这些向量的长度产生标量值的影响。因此,可以采用正交距离测量来确定照明不变下的局部颜色相似性。在存在加性噪声的情况下,通过找到从向量到未知无噪声信号的最小正交距离来估计向量共线。距离最小化可以定义为最小特征值问题。该最小值被纳入贝叶斯框架,从而允许最大化决策的后验概率 (MAP)。将结果值与静态和自适应阈值进行比较。分类标签被认为是通过马尔可夫随机场 (MRF) 采样的,以对像素相互依赖性进行建模。相应的能量函数定义为证据在空间邻域上的积分。这会导致前景蒙版的空间紧凑性和平滑边缘。使用 PETS 2001 数据集和特定照明测试集来衡量性能。