作者采用了 Floridi (2016) 开发的一种机制。在这项工作中,Floridi 将责任问题从开发人员本身的意图转移到他们的分布式道德行为对道德患者的影响。Wolf 等人从略微不同的方向出发,提出一个论点,即软件的一些特性可以用作指南,以更好地区分软件开发人员可能对软件的下游使用承担责任的情况和软件开发人员可能不承担该责任的情况。该软件责任归因系统 (SRAS)(我们在此称之为)的重要特征包括:与硬件的接近程度、风险、数据敏感性、对未来用户群体的控制程度或了解程度,以及软件的性质(通用与特殊用途)。随后的一篇论文,Grodzinsky 等人 (2020) 提供了一些证据,表明这些特征及其对责任评估的影响与文献中的一些来源一致。
[*]表示我是相应的作者[a]表明与第一作者[1]的同等贡献表示,我建议作为委员会主席[2]的研究生[3]指出了我所指导的研究生[3] [3]表示我在实验室期刊上建议的博士后研究员:Q Indices中的Q Indices,基于Scimago Journal和国家级等级。归类为Q1,Q2,Q3和Q4的期刊分别属于特定学科下的期刊的前25、25-50、50-75和75-100%。
摘要背景:Ginsenoside RB2在心血管疾病治疗中有益,但其在心力衰竭(HF)中的作用却很晦涩。这项研究旨在研究Ginsenoside RB2对HF的影响和机制。方法:构建了左前降型分支结合的HF大鼠模型和氧气葡萄糖剥夺/二氧化剂(OGD/R)H9C2细胞模型。Ginsenoside RB2用于干预。心脏功能指数,miR-216a-5p表达,自噬,氧化应激,凋亡,细胞形态和增殖,以探索Ginsenoside RB2对HF的影响。miR-216a-5p的过表达用于探索HF上的人参皂苷RB2的特定机制。结果:Ginsenoside RB2改善了HF大鼠的心脏功能,包括降低心率,LVEDP和心脏体重/体重比,以及LVSP, +DP/DT MAX,–DP/DT Max,LVEF和LVF的增加。它还下调了miR-216a-5p表达和增强的OGD/R诱导的心肌细胞生存能力。Ginsenoside RB2上调的Bcl2,LC3B II/I和Beclin1,以及HF/R-RATS和OGD/R-诱导的H9C2细胞的心肌中的BAX,CASPASE-3和P62下调的Bax,Caspase-3和P62。此外,Ginsenoside RB2增加了SOD和CAT的水平,但降低了HF大鼠心肌和OGD/R诱导的H9C2细胞中MDA和ROS的水平。然而,miR-216a-5p的过表达促进了心肌细胞的凋亡和氧化应激并抑制自噬,从而逆转了人参皂苷RB2对HF对体内HF的治疗作用。结论:Ginsenoside RB2通过增强自噬并通过miR-216A-5p下调来增强自噬并减少凋亡和氧化应激,作为HF的治疗干预效果。进一步的研究可以探索其在临床试验中的应用,并研究其效果的复杂机制网络。
Spaceliner完全可重复使用的发射器和超高速度的火箭式乘客运输处于概念设计阶段。正在进行的概念进化正在解决下一个配置版本8的系统方面。自2016年以来,有翼的,可重复使用的上层阶段几乎没有受到影响,目前正在移动本文中描述的有希望的重新设计选项的重点。空间机舱集成是要解决的重要方面,也是执行符合噪声和声音启动约束的多个任务的可行性。对不同临界分离案例的系统评估表明,胶囊的空气动力不稳定设计是不可接受的,需要重新设计用于Spaceliner 8。此外,未来SLC的鼻子部分应包括一部分分离电机,从而有助于提高急诊分离手术的稳定性。关键字:RLV,LOX-LH2-螺旋杆,空位,点对点乘客运输
摘要:KRAS 是一种经过充分验证的抗癌治疗靶点,其转录下调已被证明对具有异常 KRAS 信号传导的肿瘤细胞具有致命性。G-四链体 (G4) 是一种非典型核酸结构,可介导中心法则事件,例如 DNA 修复、端粒延长、转录和剪接事件。G4 是极具吸引力的药物靶点,因为它们比 B-DNA 更球形,能够实现更具选择性的基因相互作用。此外,它们的基因组普遍性在致癌启动子中增加,它们的形成在人类癌症中增加,并且它们可以通过小分子或靶向核酸进行调节。文献中描述了多种 G4 的推定形成,但对这些结构具有选择性的化合物尚未能够区分主要结构的生物学贡献。利用无细胞筛选技术、新型吲哚喹啉化合物的合成和 KRAS 依赖性癌细胞的细胞模型,我们描述了在 KRAS 启动子 G4 近区和 G4 中区之间进行选择的化合物,将化合物的细胞毒活性与 KRAS 调节相关联,并强调 G4 中区作为进一步靶向努力的先导分子非规范结构。
2。HS Gill,Ak Shakya,Ch Lee。 皮肤过敏原免疫疗法的微针。 美国化学工程师研究所(AICHE),2019年,美国奥兰多。 3。 Ak Shakya,Ch Lee和Hs Gill,“涂层的微针介导的过敏原特异性免疫疗法用于治疗小鼠气道过敏”,哺乳动物皮肤的屏障功能,戈登研究研讨会(GRS),2019年,2019年,美国新罕布什尔州沃特维尔谷。 4。 Ak Shakya,Ch Lee,HS Gill。 过敏原免疫疗法的微针:气道过敏的小鼠模型中的体内功效。 美国化学工程师研究所(AICHE),2018年,美国匹兹堡。 5。 Ak Shakya,Ch Lee,HS Gill。 微针的皮肤免疫疗法用于过敏。 国际疫苗学会2016年,美国波士顿。 6。 Ak Shakya,Ch Lee,HS Gill。 涂有过敏原的微甲烷作为预防过敏免疫疗法的新方法。 生物医学工程协会2016年会议,美国明尼阿波利斯,美国。 7。 Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。HS Gill,Ak Shakya,Ch Lee。皮肤过敏原免疫疗法的微针。美国化学工程师研究所(AICHE),2019年,美国奥兰多。3。Ak Shakya,Ch Lee和Hs Gill,“涂层的微针介导的过敏原特异性免疫疗法用于治疗小鼠气道过敏”,哺乳动物皮肤的屏障功能,戈登研究研讨会(GRS),2019年,2019年,美国新罕布什尔州沃特维尔谷。4。Ak Shakya,Ch Lee,HS Gill。过敏原免疫疗法的微针:气道过敏的小鼠模型中的体内功效。美国化学工程师研究所(AICHE),2018年,美国匹兹堡。5。Ak Shakya,Ch Lee,HS Gill。微针的皮肤免疫疗法用于过敏。国际疫苗学会2016年,美国波士顿。 6。 Ak Shakya,Ch Lee,HS Gill。 涂有过敏原的微甲烷作为预防过敏免疫疗法的新方法。 生物医学工程协会2016年会议,美国明尼阿波利斯,美国。 7。 Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。国际疫苗学会2016年,美国波士顿。6。Ak Shakya,Ch Lee,HS Gill。涂有过敏原的微甲烷作为预防过敏免疫疗法的新方法。生物医学工程协会2016年会议,美国明尼阿波利斯,美国。 7。 Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。生物医学工程协会2016年会议,美国明尼阿波利斯,美国。7。Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。Ak Shakya,HS Gill。过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。2015年受控发行协会年度会议,苏格兰爱丁堡。8。Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。Ak Shakya,HS Gill。使用涂层微针的皮肤过敏原特异性免疫疗法。皮肤疫苗接种峰会2015年,瑞士。9。m gatica,HS Gill,Ak Shakya。通过微针递送椭圆蛋白,以防止小鼠的卵过敏。SACNAS全国会议,2014年,美国洛杉矶。 10。SACNAS全国会议,2014年,美国洛杉矶。10。Ak Shakya,kumar,KS Nandakumar。聚-N-异丙丙烯酰胺作为胶原蛋白诱导关节炎的辅助。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。 11。 srivastava,ak shakya,a kumar。 使用冷冻凝胶的细胞和生物分子的硼酸盐亲和力色谱法。 第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。 12。 Ak Shakya,kumar,KS Nandakumar。 热响应性聚-N-异丙丙烯酰胺作为实验性类风湿关节炎中的辅助。 年度会议与博览会生物材料学会2011年,美国奥兰多,美国。 13。 srivastava,ak shakya,a kumar。 基于组织工程应用的基于聚(N-乙烯基caprolactam)的冷冻凝胶支架:合成和生物物理表征。 年度会议与博览会,2010年生物材料学会,美国西雅图,美国西雅图,美国。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。11。srivastava,ak shakya,a kumar。使用冷冻凝胶的细胞和生物分子的硼酸盐亲和力色谱法。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。 12。 Ak Shakya,kumar,KS Nandakumar。 热响应性聚-N-异丙丙烯酰胺作为实验性类风湿关节炎中的辅助。 年度会议与博览会生物材料学会2011年,美国奥兰多,美国。 13。 srivastava,ak shakya,a kumar。 基于组织工程应用的基于聚(N-乙烯基caprolactam)的冷冻凝胶支架:合成和生物物理表征。 年度会议与博览会,2010年生物材料学会,美国西雅图,美国西雅图,美国。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。12。Ak Shakya,kumar,KS Nandakumar。热响应性聚-N-异丙丙烯酰胺作为实验性类风湿关节炎中的辅助。年度会议与博览会生物材料学会2011年,美国奥兰多,美国。13。srivastava,ak shakya,a kumar。基于组织工程应用的基于聚(N-乙烯基caprolactam)的冷冻凝胶支架:合成和生物物理表征。年度会议与博览会,2010年生物材料学会,美国西雅图,美国西雅图,美国。
NFV 中 IT 与传统电信网络观点的混合也带来了一个具有挑战性但又重要的网络转型环境。传统上,网络运营商和 CT 供应商已经习惯了基于共识的标准开发流程,然后开发产品并实现商业化。然而,IT 供应商和开源社区的情况有所不同;它们基于“代码优先”流程,即先开发代码,然后贡献代码。这两种开发当前电信网络技术的方式需要结合在一起,就像“同一枚硬币的两面”一样;在这种情况下,网络运营商、CT 和 IT 供应商以及开源社区需要共同努力,弥合两种观点之间的差距,促进对 NFV 标准的更广泛支持。例如,虽然开源可以尽可能地进一步支持和实施标准,但标准可以考虑“借用理念”,以利用开源在规范中的核心优势。
随着材料科学、生物技术、生物医学工程和医学等跨学科研究的快速发展,仿生皮肤应运而生,并被广泛应用于各种奇妙的领域。仿生皮肤由于其个性化、良好的生物相容性、多功能性、易于维护和穿戴以及大规模生产等优点,在康复医学的应用中非常有前景。因此,本综述介绍了仿生皮肤在下一代康复医学中的最新进展。首先简要介绍了仿生皮肤的分类。然后,详细讨论了国内外仿生皮肤在康复医学领域的各种应用。最后,我们提出了当前面临的挑战,并提出了下一步的研究方向。
2022 年,icddr,b 开始使用 MiniSeq 测序系统(美国圣地亚哥 Illumina)和 Deeplex® Myc-TB 检测(法国里尔 GenoScreen),该检测可检测导致对 15 种抗结核药物产生耐药性的突变。到 2022 年 12 月,已对 icddr,b 的结核病筛查和治疗中心 (TBSTC)、国立胸科医院疾病研究所 (NIDCH) 和 Shaymoli 250 张床位的结核病医院登记的 310 名患者采集的痰液样本进行了 tNGS。同时,还使用固体(Löwenstein-Jensen)和液体培养(Bactec TM MGIT TM )对样本进行表型药物敏感性测试 (pDST) 以及通过线探针测定(GenoType MTBDRplus 和 MTBDRsl)进行测试。
• 新闻发布 – 可能是来自类似行业公司的直接新闻或外围损害。 • 跳空下跌,开盘时交易量高于 VWAP。 • 最好在开盘前最后 5 分钟显示强势。