作用 β 在 S 上是传递的,并将其变成齐次流形[2-5]。因此,U(H) 正则作用的基本向量场形成 GL(H) 作用的基本向量场代数的李子代数。[6] 证明了,为了描述 β 的基本向量场,只需考虑 U(H) 在 S(H) 上的正则作用的基本向量场以及与期望值函数 la(ρ)=Tr(aρ) 相关的梯度向量场,其中 a 是 H 上有界线性算子空间 B(H) 中的任意自伴元素,借助于所谓的 Bures-Helstrom 度量张量 [7-12]。这个例子提供了酉群 U(H)、S(H) 的 GL(H) - 齐次流形结构、Bures–Helstrom 度量张量和期望值函数之间的意外联系。然而,这并不是单调度量张量与一般线性群 GL(H) “相互作用”的唯一例子。事实上,在 [6] 中,还证明了 U(H) 正则作用的基本向量场以及与期望值函数相关的梯度向量场通过 Wigner–Yanase 度量
平均值定理的重要性及其应用,评估多个积分,具有物理理解的矢量演算语言,可以处理诸如流体动力学和电磁场等受试者,序列和系列和系列的融合以及傅立叶系列。模块1差分微积分12小时的限制,连续性和不同性;平均值定理,泰勒和麦克劳林的定理,部分分化,总分分化,欧拉的定理和概括,最大值和最小值的几个变量功能,Lagrange的乘数方法;变量的变化 - 雅各布人。模块2积分10小时的微积分基本定理,不当积分,面积的应用,体积。双重和三个积分模块3矢量计算14标量和向量场;向量分化;定向衍生物 - 标量场的梯度;向量场的发散和卷曲 - 拉普拉斯 - 线和表面积分;格林在飞机上的定理;高斯分歧定理;斯托克斯定理。模块4序列和串联10小时
向量微积分:回顾向量代数的概念、标量和向量函数、梯度散度和旋度、方向导数、保守向量场、无旋函数和螺线函数。线积分、线积分的路径独立性、曲面积分的概念、格林定理、斯托克斯定理和散度定理。
平均值定理的重要性及其应用,评估多个积分,具有物理理解的矢量演算语言,可以处理诸如流体动力学和电磁场等受试者,序列和系列和系列的融合以及傅立叶系列。模块1差分微积分12小时的限制,连续性和不同性;平均值定理,泰勒和麦克劳林的定理,部分分化,总分分化,欧拉的定理和概括,最大值和最小值的几个变量功能,Lagrange的乘数方法;变量的变化 - 雅各布人。模块2积分10小时的微积分基本定理,不当积分,面积的应用,体积。双重和三个积分模块3矢量计算14标量和向量场;向量分化;定向衍生物 - 标量场的梯度;向量场的发散和卷曲 - 拉普拉斯 - 线和表面积分;格林在飞机上的定理;高斯分歧定理;斯托克斯定理。模块4序列和串联10小时序列和串联功能系列的收敛。模块5傅立叶系列和傅立叶变换10小时傅立叶系列:周期功能,欧拉的公式,dirichlet的条件,均匀和奇数功能,半范围序列,parseval的身份。傅立叶变换
神经普通微分方程(神经odes)是一个深层神经网络的新家族。本质上,神经极是一个微分方程,其向量场是神经网络。将神经颂作为机器学习模型的一部分,使该模型比标准模型更有效。的确,可以使用伴随灵敏度方法来训练模型的神经ode块,该方法计算梯度下降方法的梯度,以避免经典的反向传播的计算成本。我们对这一领域的贡献是对神经ode块的稳定性和合同性的研究,是一个微分方程,目的是设计训练策略,以使整体机器学习模型稳健且稳定,以抗对抗攻击。此海报基于[1],[2]和[3]。
摘要。存在许多具有对称性的系统的示例,并且可以通过具有对称性的控件进行监视。由于沿进化保留了对称性,因此不可能完全可控,并且必须将可控性视为具有相同对称性的状态的内部。我们证明,具有对称性的通用系统在这个意义上是可以控制的。该结果具有多种应用,例如:(i)当粒子之间相互作用的内核扮演均值场控制的作用时,粒子系统的一般可控性; (ii)在具有边界的歧管上对向量场的家庭的一般可控性; (iii)具有“通用”自发型层的神经网络体系结构的通用介绍 - 在最近的神经网络体系结构中,例如在变形金刚体系结构中的一种无处不在的层。我们开发的工具可以帮助解决模棱两可系统控制的其他各种问题。
液体晶体(LC)是一种出色的电磁材料,在液体和晶体固体之间具有中间结构。它具有较大的光学各向异性,其光学特性可以通过中等外部磁场轻松修饰,从而使光的放大和相位调制。LC显示基于光的幅度或两极分化的模拟,已成为巨大的商业成功。同时,在光子学领域探索了许多LC设备的新型非显示器应用[1-6]。lc光学元素在操纵不同程度的光中发现了新的作用,尤其是在矢量梁的工程中,具有简单配置,方便使用,低成本和高转换效率的优势。向量场[7 - 9],其中横梁横平的光极化是空间变化的,引起了很多关注。矢量梁作为对矢量螺旋方程的自然解决方案。它们经常被生成具有正交极化状态的正交标量场的超级位置,为