腹膜腔是胃腺癌(GAC)转移的常见部位。腹膜癌(PC)对当前疗法具有抵抗力,并赋予预后不良,强调需要鉴定新的治疗靶标。CD47在结合其受体SIRPα时向髓样细胞传达了“不要吃我”的信号,这有助于肿瘤细胞规避巨噬细胞吞噬作用并逃避先天的免疫反应。先前的研究表明,单独的CD47封锁会导致有限的临床益处,这表明可能需要与CD47同时抑制其他靶标,以引起强烈的抗肿瘤反应。在这里,我们发现CD47在恶性PC细胞上高度表达,CD47升高与预后不良有关。Galectin-3(Gal-3)表达与CD47表达相关,GAL-3和
结果:与接受单剂量的小鼠相比,在两种RAAV9-微肺炎剂量后,白细胞的病毒载量显着增加了77倍。重复的基因疗法在肌肉中导致肌肉中的病毒载量较低和微肺炎表达。用两种RAAV9-微生病剂量治疗的小鼠中有63%产生了肌营养不良蛋白的抗体,在用两种RAAV9-微生病剂量和组合疗法治疗的小鼠中,该抗体较少(25%)。同样,接受联合疗法的小鼠中AAV CAPSID特异性抗体水平也降低。与单独的RAAV9-微育蛋白相比,通过质谱,免疫荧光和蛋白质印迹评估的骨骼肌中的微肺炎表达在结合处理的小鼠中的水平明显高。
抽象背景:败血症相关的脑病(SAE)是与败血症相关的器官功能障碍的一种普遍形式。没有伴随的明显的中枢神经系统(CNS)感染,但它具有死亡率的重大风险,可能导致持久的神经系统并发症。Angong niuhuang药丸(AGNH)在诸如脑缺血,脑部创伤和败血症等疾病中的功效已经建立了良好。尽管如此,AGNH在SAE进展中的特定调节作用和基本机制仍未探索。方法:脂多糖(LPS)处理用于构建SAE大鼠模型。Berderson的神经检查评分系统用于评分。通过酶联免疫吸附测定(ELISA)或相应的商业试剂盒检查基因和铁含量的水平。通过自动凝血分析仪确认了凝血酶原时间(PT),激活的部分血栓质蛋白时间(APTT),凝血酶时间(TT)和纤维蛋白原(FIB)水平。通过苏木精(HE)染色评估了神经元的数量和形态。蛋白质表达是通过蛋白质印迹确定的。结果:在AGNH或Deatecamine(DFO,铁毒性抑制剂)治疗后,LPS治疗介导的伯德森从未通过LPS治疗介导的功能评分增加,这表明AGNH改善了少年SAE小鼠的神经行为功能。此外,AGNH改善了年轻SAE小鼠的炎症和凝结参数。AGNH促进了少年SAE小鼠的神经元生长和减轻神经元损伤。此外,AGNH抑制了年轻SAE小鼠的氧化应激。最后,证明AGNH促进了与核因子2相关因子2(NRF2)/谷胱甘肽过氧化物酶4(GPX4)信号传导途径,通过上调NRF2和GPX4蛋白表达式。结论:这项研究表明,通过调节NRF2/GPX4信号通路,AGNH具有抑制GPX4诱导的少年SAE小鼠纤维毒性的能力。这一突破意味着AGNH作为SAE的治疗剂有前途的前景。
摘要:(1)背景:三阴性乳腺癌(TNBC)是乳腺癌的独特亚组,表现出高水平的复发,而新辅助化疗在其治疗管理中是有益的。抗PD-L1免疫疗法改善了新辅助治疗在TNBC中的作用。(2)方法:在铁毒性引起的诱导剂治疗下开发了用于综合的磁法分析的免疫调节和与螺旋病相关的R包装:用螺旋病诱导剂刺激的TNBC细胞(GSE173905(GSE173905)(GSE173905)(GSE154425),单细胞数据(GSE154425),单细胞数据(GESE191911912246)和群体specetrients and Specter sexpsertry sexpsertry stractrienty。临床结合分析是用乳腺肿瘤(TCGA和代理队列)进行的。Protein-level validation was investigated through protein atlas proteome experiments.(3)结果:Erastin/rsl3投动诱导者在TNBC细胞中上调CD274(MDA-MB-231和HCC38)。In breast cancer, CD274 expression is associated with overall survival.表现出高表达CD274的乳腺肿瘤上调了一些与预后相关的铁铁蛋白驱动因素:IDO1,IFNG和TNFAIP3。在蛋白质水平上,在盐霉素治疗下,在乳腺癌干细胞中确定了CD274和TNFAIP3的诱导。在用环磷酰胺处理的4T1肿瘤中,发现CD274的单细胞表达在髓样和淋巴样纤维化细胞中增加,与其受体PDCD1无关。在乳腺肿瘤转录组分层患者预后计算的CD274铁凋亡驱动器评分:在基础亚组中观察到较低的分数,其复发性风险得分较高(OnCotypEDX,GGI和GGI和Gene70评分)。在TNBC亚组中发现了代表队列中的CD274,IDO1,IFNG和TNFAIP3。发现CD274的铁质驱动器评分与总体生存有关,与TNM分类和年龄诊断无关。在蛋白质水平(4)结论中确定了在乳房导管癌的活检中CD274,TNFAIP3,IFNG和IDO1的肿瘤表达:在蛋白质水平(4)结论:螺旋菌病诱导的PD-L1在TNBC细胞中升级PD-L1在TNBC细胞中已知是一种有效的免疫疗法疗程的tnbc患者。基础和TNBC肿瘤高度表达的CD274和铁毒驱动因素:IFNG,TNFAIP3和IDO1。CD274铁质驱动器评分与预后和乳腺癌复发的风险有关。对于反复发作的TNBC提出了抗PD-L1免疫疗法的铁凋亡诱导剂的潜在协同作用。
嵌合抗原受体 (CAR) T 细胞疗法在治疗血液系统恶性肿瘤和实体瘤方面均表现出临床反应。尽管在动物模型和临床试验中观察到了肿瘤快速缓解的情况,但肿瘤复发伴随着多种治疗耐药机制。此外,虽然长期治疗耐药的潜在机制众所周知,但短期适应性仍不太为人所知。然而,更多的观点揭示了短期适应性,并认为它为长期耐药提供了机会窗口。在本研究中,我们探索了一种以前未报道的机制,其中肿瘤细胞采用吞噬作用从 CAR-T 细胞中获取 CAR 分子,这是先前记录的过程的逆转。这种机制导致 CAR 分子耗竭和随后的 CAR-T 细胞功能障碍,也导致短期抗原丢失和抗原掩蔽。这种类型的细胞间通讯与 CAR 下游信号传导、CAR-T 细胞状况、靶抗原和肿瘤细胞类型无关。然而,它主要取决于抗原密度和 CAR 敏感性,并与肿瘤细胞胆固醇代谢有关。可以通过自适应地施用具有抗原密度个性化 CAR 敏感性的 CAR-T 细胞来部分缓解这种吞噬作用引起的 CAR 分子转移。总之,我们的研究揭示了 CAR 分子转移的动态过程,并完善了实体肿瘤临床 CAR-T 治疗框架。
背景:小胶质细胞是中枢神经系统不可或缺的一部分,但由于获取和培养原代人类小胶质细胞的挑战,我们对小胶质细胞生物学的了解有限。HMC3 是研究人类小胶质细胞的重要细胞系,因为它易于获取且易于在标准实验室中维护。尽管 HMC3 广泛用于小胶质细胞研究,但尚未描述强大的遗传方法。在这里,我们报告了一个 CRISPR 基因组编辑平台,通过电穿孔 Cas9 核糖核蛋白 (Cas9 RNP) 和合成 DNA 修复模板,实现 HMC3 的快速和精确的基因修饰。为了进行概念验证演示,我们针对了与调节小胶质细胞中的淀粉样蛋白 β (A b ) 和胶质母细胞瘤吞噬作用有关的基因。我们表明,CRISPR 基因组编辑可以增强 HMC3 的吞噬活性。
✉函数和材料请求应发给迈克尔·C·巴西克(Michael C. Bassik)。bassik@stanford.edu。作者贡献R.A.K.和M.C.B.构思并设计了这项研究。R.A.K. 为全基因组CRISPR筛选设计了癌症 - 巨噬细胞共培养系统。 R.A.K. 在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。 和K.S.和B.M. 在KARPAS-299细胞中进行了CRISPR屏幕。 Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.为全基因组CRISPR筛选设计了癌症 - 巨噬细胞共培养系统。R.A.K. 在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。 和K.S.和B.M. 在KARPAS-299细胞中进行了CRISPR屏幕。 Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。和K.S.和B.M.在KARPAS-299细胞中进行了CRISPR屏幕。Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。Y.N.在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。a.m.m.和A.A.B.通过I.L.W.的建议进行了合成小鼠实验。和F.V.-C。 D.F.生成了APMAP同源模型。J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。J.A.S.在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。L.J.-A.分析了单细胞RNA-sequering数据。R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.和M.G.进行了incucyte分析以验证CRISPR淘汰赛。R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K,M.G。和S.L.克隆的sgrna载体和产生的基因敲除细胞系。R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.进行了蛋白质印迹,共聚焦显微镜和药物滴定。M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。M.G.,S.L。和R.A.K.进行了流式细胞仪分析。R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.和S.L.执行了RNA-sequest,D.Y.和K.L.分析了RNA测序数据。D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。D.Y.帮助设计了寡核苷酸子图和K.S.克隆了子图。R.A.K. 和M.C.B. 写了手稿。 所有作者都讨论了结果和手稿。R.A.K.和M.C.B.写了手稿。所有作者都讨论了结果和手稿。
针对白血病细胞与微环境之间的相互作用是一种提高急性髓系白血病 (AML) 治疗效果的有效方法。AML 浸润会诱导人类骨髓微环境内大量释放炎性细胞因子,从而加速白血病的发生。由于跨膜糖蛋白 CD38 已被证实可调节细胞因子的释放,我们评估了 CD38 抑制在 AML 中的抗白血病潜力。AML 细胞中的 CD38 表达被证明依赖于微环境线索,并且可以通过添加维甲酸来显著增强。事实上,抗 CD38 抗体达雷妥尤单抗在 AML 的 3D 体外三重培养模型中表现出显著的细胞抑制效果,但具有适度的细胞自主细胞毒活性并且与 CD38 表达水平无关。与达雷木单抗在 AML 中主要由微环境介导的活性一致,CD38 抑制显着诱导了抗体依赖性吞噬作用,并在异种移植模型中显示出对体内 AML 细胞运输的干扰,但总体上缺乏强大的抗白血病作用。
巨噬细胞是肿瘤微环境中最丰富的非恶性细胞之一,在介导肿瘤免疫中起着关键作用。作为重要的先天免疫细胞,巨噬细胞具有吞噬肿瘤细胞和呈递肿瘤特异性抗原以诱导适应性抗肿瘤免疫的潜力,这导致人们对以巨噬细胞吞噬作用为目标的癌症免疫治疗的兴趣日益浓厚。然而,活肿瘤细胞已经进化到通过大量表达抗吞噬分子(如 CD47)来逃避巨噬细胞的吞噬作用。此外,巨噬细胞还能快速识别和吞噬肿瘤微环境中的凋亡细胞(胞吞作用),从而抑制炎症反应并促进肿瘤细胞的免疫逃逸。因此,通过阻断活肿瘤细胞上的抗吞噬信号或抑制肿瘤胞吞作用来干预巨噬细胞吞噬作用为癌症免疫疗法的开发提供了一种有希望的策略。本文首先总结了巨噬细胞介导的肿瘤细胞吞噬作用的调节,然后概述了针对巨噬细胞吞噬作用的抗肿瘤疗法开发策略。鉴于传统疗法(例如单克隆抗体、小分子抑制剂)给药可能产生的脱靶效应,我们强调了纳米医学在巨噬细胞吞噬作用干预方面的机会。
1加拿大多伦多大学多伦多大学实验室医学与病理学系; 2中国北京北京北京北京北京医院血液学系; 3加拿大安大略省多伦多大学卫生网络生物统计学系和4个血液学和医学肿瘤学系,大学卫生网络,多伦多,安大略省,加拿大安大略省