引言急性肾脏损伤(AKI)是一种常见疾病,由于其诊断率低和缺乏及时治疗而对人类健康构成严重威胁,这大大增加了严重的AKI和慢性儿童疾病(CKD)(1,2)。缺血 - 再灌注损伤(IRI)被认为是临床儿童损伤的主要原因,并且始终伴有单核吞噬细胞(MP)入侵和炎症(3-6)。对IRI诱导的炎症基础的细胞病理生理过程的更好理解可能会导致寻找新的治疗靶标,以减少损伤并防止CKD进展。iri诱导的AKI主要集中在皮质囊肿结的近端管状细胞(PTS)中。单细胞RNA-SEQ(SCRNA-SEQ)结果表明,PT受损的细胞具有促炎和纤维化特性,最终导致了肾小管病理修复,例如肾小管萎缩和间质纤维化(6,7)。有趣的是,MP浸润和炎症的大量损伤的皮质甲状腺结与最大的PT损伤结合在一起,表明两者之间的串扰。浸润免疫细胞的数量和免疫炎症反应的程度确定了AKI的结果。先天和适应性免疫都参与了iri引起的AKI的损害和修复(8)。一项空间转录测序研究表明,正常儿童中的巨噬细胞主要局限于髓质血液供应丰富的区域。IRI发生后,在IRI 2小时后,外周血巨噬细胞子集特异性地趋化与皮质中的交界处,而在败血症引起的IRI中,这些细胞具有弥漫性分布,表明MPS在上述IRI过程中起着更为重要的作用(9-11)。具体而言,在AKI的早期阶段,驻留在肾脏和血液中的MP被顺序激活,释放单核趋化蛋白-1(MCP-1)(MCP-1),趋化因子(CXC Motif)Ligand-1(CXCL1)(CXCL1)和CSF1,以及CSF1,以招募更多MP,这可能
调查其适用性作为药物。d Ningodia,S Kansal,A Verma,Rahul Shukla,P Shukla,P Dwivedi,V Kumar,P Gupta,A。K. Dwivedi,P R. Mishra。Bionanoscience杂志第4卷,第66-73页,2010年。100)利用4-硫酸盐N-乙酰乳糖胺装饰明胶纳米颗粒,以有效地靶向体外和体内专业的吞噬细胞。P. Dwivedi,S。Kansal,M.Sharma,Rahul Shukla,A。Verma,P。Shukla,P。Tripathi,P。Gupta,D。Saini,K。Khandelwal,R。Verma,A。K. Dwivedi和P. R. Mishra药物靶向杂志,2012年,(影响因子5.1)101)柠檬酸二乙基甲骨唑的微粒用于治疗淋巴丝虫病。Rahul Shukla *,J。Kumar,P。Dwivedi,P。Gatla和P.R.Mishra Asian化学杂志;卷。 25,,302-304,2013。 102)抗菌药物的固体脂质纳米颗粒的制备和表征,用于口服给药。 Dwivedi,R。Khatik,K。Khandelwal,Rahul Shukla,S。KPaliwal,A。KDwivedi,P R Mishra,生物材料与组织工程杂志,第1卷。 4,1-5,2014。 103)使用Microfluidizer,P。Tripathi,A.Verma,P。Dwivedi,D。Sharma,V。Kumar,V。Kumar,Rahul Shukla,V。Teja Banala,G。Pandey,S。D. Pandey,S。D. Pachauri和Per Engineerry和杂志。 4(3),194-197),2014年。Mishra Asian化学杂志;卷。25,,302-304,2013。102)抗菌药物的固体脂质纳米颗粒的制备和表征,用于口服给药。Dwivedi,R。Khatik,K。Khandelwal,Rahul Shukla,S。KPaliwal,A。KDwivedi,P R Mishra,生物材料与组织工程杂志,第1卷。4,1-5,2014。103)使用Microfluidizer,P。Tripathi,A.Verma,P。Dwivedi,D。Sharma,V。Kumar,V。Kumar,Rahul Shukla,V。Teja Banala,G。Pandey,S。D. Pandey,S。D. Pachauri和Per Engineerry和杂志。4(3),194-197),2014年。104)开发多维前透纳米胶囊,以改善MCF-7细胞中体外细胞毒性和细胞摄取,SK Singh,V。T. :
我们对Zhao等人的研究充满兴趣和惊讶。对SGLT2抑制剂empagliflozin在全身性红斑狼疮(SLE)和MRLLPR小鼠的狼疮样肾炎中的治疗作用。1关注点是:(1)SGLT2是一种主要在肾脏近端小管中表达的钠葡萄糖转运蛋白。sglt2抑制剂可增强钠和葡萄糖排泄,以及其他机制,这些机制对心脏系统,葡萄糖代谢和造血的有益作用。相比之下,没有直接对自身免疫的影响。作者报告了对SLE的各个方面的抑制以及相关的自动免疫,也就是说,对自动反应性免疫细胞克隆产生的全部IgG和双链DNA(DSDNA)自身抗体的深刻抑制作用,在淋巴机构和骨髓中引起了不可能的效果,这使得对这种疾病的效果不佳,并提高了这种效果。(2)作者试图在人类肾脏活检和MRLLPR小鼠肾脏中的足细胞中降低SGLT2蛋白的表达,但是图2中缺乏管状信号清楚地表明,所使用的抗体未检测到SGLT2。1的确,sglt2在管状细胞的刷子边界中的显着染色,在人类肾脏活检的肾小球中几乎没有表达,抗中性粒细胞胞质抗体(ANCA)血管炎或狼疮2与肾炎2的较低者(scrna)的序列(scrna)不一足细胞中的表达水平。未使用适当的实验工具和控件。这与作者在转基因“ Podocyte”细胞系中发现强SGLT2蛋白表达的发现对比。(3)这种健康和患病的肾脏SCRNA测序数据集中的足细胞对NLRP3转录本也为阴性,因此,关于NLRP3炎性症的参与,所有的数据和推测都与已知的证据无关。尤其是,NLRP3免疫染色(在图4G中)1再次缺乏居民或浸润的单核吞噬细胞中的正信号,识别出所述信号是非特异性的。从这个意义上讲,我们最近反驳了体内原代人足细胞和小鼠足细胞中功能性NLRP3炎症体的主张。3此外,我们在同一小鼠模型中对empagliflozin进行了类似的研究,并且没有观察到任何报告的发现(未提交)。我们认为,狼疮性肾炎患者将在慢性肾脏疾病的进展和相关心血管发病率方面受益于SGLT2抑制作用,但Zhao和SoAthors的报告似乎暗示SGLT2抑制作用将是系统性自动自动抑制的有效抑制器。纸张,就其文章而言,得出的结论不受提供的数据的支持。
我们对Zhao等人的研究充满兴趣和惊讶。对SGLT2抑制剂empagliflozin在全身性红斑狼疮(SLE)和MRLLPR小鼠的狼疮样肾炎中的治疗作用。1关注点是:(1)SGLT2是一种主要在肾脏近端小管中表达的钠葡萄糖转运蛋白。sglt2抑制剂可增强钠和葡萄糖排泄,以及其他机制,这些机制对心脏系统,葡萄糖代谢和造血的有益作用。相比之下,没有直接对自身免疫的影响。作者报告了对SLE的各个方面的抑制以及相关的自动免疫,也就是说,对自动反应性免疫细胞克隆产生的全部IgG和双链DNA(DSDNA)自身抗体的深刻抑制作用,在淋巴机构和骨髓中引起了不可能的效果,这使得对这种疾病的效果不佳,并提高了这种效果。(2)作者试图在人类肾脏活检和MRLLPR小鼠肾脏中的足细胞中降低SGLT2蛋白的表达,但是图2中缺乏管状信号清楚地表明,所使用的抗体未检测到SGLT2。1的确,sglt2在管状细胞的刷子边界中的显着染色,在人类肾脏活检的肾小球中几乎没有表达,抗中性粒细胞胞质抗体(ANCA)血管炎或狼疮2与肾炎2的较低者(scrna)的序列(scrna)不一足细胞中的表达水平。未使用适当的实验工具和控件。这与作者在转基因“ Podocyte”细胞系中发现强SGLT2蛋白表达的发现对比。(3)这种健康和患病的肾脏SCRNA测序数据集中的足细胞对NLRP3转录本也为阴性,因此,关于NLRP3炎性症的参与,所有的数据和推测都与已知的证据无关。尤其是,NLRP3免疫染色(在图4G中)1再次缺乏居民或浸润的单核吞噬细胞中的正信号,识别出所述信号是非特异性的。从这个意义上讲,我们最近反驳了体内原代人足细胞和小鼠足细胞中功能性NLRP3炎症体的主张。3此外,我们在同一小鼠模型中对empagliflozin进行了类似的研究,并且没有观察到任何报告的发现(未提交)。我们认为,狼疮性肾炎患者将在慢性肾脏疾病的进展和相关心血管发病率方面受益于SGLT2抑制作用,但Zhao和SoAthors的报告似乎暗示SGLT2抑制作用将是系统性自动自动抑制的有效抑制器。纸张,就其文章而言,得出的结论不受提供的数据的支持。
益生菌近年来由于其潜在的健康益处及其在促进平衡的肠道微生物组中的作用而引起了显着关注。该主题旨在研究益生菌的应用及其对人类健康的广泛影响。20世纪见证了益生菌研究的重大转变,从科学家Elie Metchnikoff的开创性工作开始。他假设在发酵乳制品中通常发现的乳酸细菌的消耗可以通过调节肠道菌群来赋予健康受益。他的开创性思想为进一步的科学询问铺平了道路。最近,已经开发了创新方法来发现可能对人类和牲畜动物都有利益的菌株[1-3]。可以使用表型测试来评估被视为益生菌的菌株的必要特征,例如对胆汁盐的抗性,对氧化应激的细胞保护作用以及对病原体的抑制[4-7]。此外,似乎人工智能算法可以通过确定tRNA序列中的信息含量作为益生菌表征的关键基因组特征来识别新益生菌,并将其与人类肠道中的病原体区分开来[8]。此外,事实证明,转录组分析对于评估某些益生菌菌株(如rhamnosus rhamnosus scb0119)所表现出的潜在抗菌机制非常有价值[9]。益生菌最吸引人的方面之一是它们调节象征系统的潜力。cremoris和L. paracasei subsp。研究表明,某些益生菌菌株可以增强先天和适应性免疫反应。这种调节可能对从过敏到自身免疫性疾病的状况具有深远的影响,为治疗干预提供了有前途的途径。例如,用L. reuteri治疗可以调节肠道微生物组成并增强色氨酸代谢,从而导致芳基烃受体配体的产生,包括吲哚乳酸和吲哚 - 丙酸。这些配体激活AHR信号,有效地降低了异常的Th2型反应,并被证明是减轻特应性皮炎的有效替代方法[10]。此外,乳腺乳酸亚生成菌的热杀死混合物的给药。paracasei证明了免疫T细胞平衡的调节和带有家用尘螨提取物引起的特应性皮炎的小鼠的IgE产生的抑制,从而减少了相关症状[11]。几项研究表明,不仅细菌细胞本身,而且它们的上清液产物,还通过刺激巨噬细胞中的吞噬细胞来诱导免疫调节活性,从而增强免疫调节剂的表达,例如NO,TNF-Alpha,TNF-Alpha,IL-6,Inos和Cox-2 [12] [12]。此外,已经证明某些益生菌菌株能够在粘膜部位施加其免疫调节特性,包括生命和灭活时。例如,看来MBF蛋白与这些菌株诱导的免疫生物效应并不涉及,从而提供了相等的保护侵害症状[13]。益生菌在管理各种胃肠道疾病方面表现出了巨大的希望。诸如肠易激综合征,炎症性肠病等疾病,
间充质基质细胞(MSC)疗法对肾脏移植引起了显着兴趣。MSC治疗已在几种临床研究环境中进行了研究,无论是诱导疗法,急性排斥反应或支持维持治疗,允许断奶以断奶的免疫抑制药物(1-5)。在肾脏移植的情况下,对于大多数临床研究,已应用自体MSC治疗(3,5-7)。但是,由于制造MSC产品需要数周的时间,因此在临床环境中使用“现成”同种异体MSC更为可行。在海王星研究中,移植后6个月注入同种异体MSC(8)。在这项1B研究中,选择第三方MSC不具有反复的人白细胞抗原(HLA)与肾脏供体的不匹配,以最大程度地降低抗Donor免疫反应的风险。这项研究证明了HLA选择的第三方MSC在肾脏移植受者中输注的安全性与输注后他克莫司龙槽水平较低(MSC IFFUSION 6.1(±1.7)ng/mL相比,与MSC Iffusion 3.0(±0.9)Ng/ml相比)。MSC被认为可以促进移植后的免疫耐受性,并具有免疫调节和抗炎性弹药特性(4、9、10)。但是,MSC治疗的作用机理仍未完全阐明。临床前鼠研究表明,潜在的局部作用机理不太可能是由于大多数MSC在肺的微脉管系统中积累,并且在输注后几个小时内无法检测到(11,12)。Dazzi等人小组的鼠类研究。几项研究表明,旁分泌作用因子(例如细胞因子,生长因子和免疫调节蛋白)的分泌(13-16)。另一种建议的作用机理是MSC在肺中被单核细胞吞噬,并且这些单核细胞在MSC的免疫调节作用的介导,分布和传播中起重要作用(17)。确定输注后不久将MSC降解(10)。此外,他们发现凋亡过程对于MSC的免疫调节作用至关重要。假定这部分取决于吞噬凋亡MSC后的吞噬细胞衍生的吲哚胺2,3-二氧酶(IDO)活性。尽管有这些临床前数据,但在临床环境中输注时MSC的细胞死亡证明很少。最近,无细胞的DNA(CFDNA)已被鉴定为固体器官移植中排斥反应的有趣生物标志物(18)。CFDNA的存在部分是由于主动分泌,但最重要的来源是细胞经历细胞凋亡或坏死。因此,供体衍生的CFDNA可以用作细胞损伤和细胞死亡的读数,并作为移植排斥的间接度量(19-21)。在2017年,发表了DART试验的结果(22)。在这项研究中,肾移植后测量了供体衍生的无细胞DNA(DD-CFDNA),并用作
Dudziak D、Heger L、Agace WW、Bakker J、de Gruijl TD、Dress RJ、Dutertre CA、Fenton TM、Fransen MF、Ginhoux F、Heyman O、Horev Y、Hornsteiner F、Kandiah V、Kles P、Lubin R、Mizraji G、Prokopi A、Saar O、Sopper P、Stotz、Topp、H、Topp、EC、MM CH、van Pul K、van de Ven R、Wilensky A、Yona S、Zelle-Rieser C。人类非淋巴组织 DC 的制备和流式细胞术分析指南。欧洲免疫学杂志。 2024 年 12 月 12 日:e2250325 Araujo David B、Atif J、Vargas E Silva Castanheira F、Yasmin T、Guillot A、Ait Ahmed Y、Peiseler M、Hommes JW、Salm L、Brundler MA、Surewaard BGJ、Elhenawy W、MacParland S、Kuphoux、P. 和 Kupffer、Kuffer 细胞。ver 窦状隙可减轻新生儿败血症和脑膜炎。科学免疫学。 2024 年 11 月;9(101):eadq9704。 Abdelbasset M、Saron WAA、Ma D、Rathore APS、Kozaki T、Zhong C、Mantri CK、Tan Y、Tung CC、Tey HL、Chu JJH、Chen J、Ng LG、Wang H、Ginhoux F、St John AL。胎儿单核吞噬细胞对寨卡病毒神经侵袭和先天感染期间神经保护的不同贡献。细胞。 2024年11月6日:S0092-8674(24)01210-8。 Guo W, Li Z, Anagnostopoulos G, Kong WT, Zhang S, Chakarov S, Shin A, Qian J, Zhu Y, Bai W, Cexus O, Nie B, Wang J, Hu X, Blériot C, Liu Z, Shen B, Venteclef N, Su B, Ginhoux F. Notch 信号调节肝病中巨噬细胞介导的炎症相关代谢功能障碍。免疫。 2024 年 10 月 8 日;57(10):2310-2327.e6。 Tiwari SK、Wong WJ、Moreira M、Pasqualini C 和Ginhoux F. 诱导多能干细胞来源的巨噬细胞作为模拟人类疾病的平台。天然免疫评论。 2024 年 9 月 27 日。Anagnostopoulos G、Blériot C、Venteclef N 和 Ginhoux F。免疫代谢重塑:宏量营养素和巨噬细胞的故事。结果 Probl Cell 不同。 2024;74:89-118。 Gessain G、Anzali AA、Lerousseau M、Mulder K、Bied M、Auperin A、Stockholm D、Signolle N、Sassi F、Marques Da Costa ME、Marchais A、Sayadi A、Weidner D、Uderhardt S、Blampey Q、Nakkireddy SR、Broutin S、Dutertre CA、Philaine、Walter、A-Plaine、A-Plaine J、Breuskin I、Casiraghi O、Gorphe P、Classe M、Scoazec JY、Bleriot C、Ginhoux F. 表达 Trem2 的多核巨噬细胞是头颈部鳞状细胞癌预后良好的生物标志物。癌症发现。 2024 年 9 月 16 日。
北卡罗来纳州立大学,教堂山,27599,北卡罗来纳州,美国 8 9 *通讯地址 10 Christopher E. Nelson,博士 11 生物医学工程系 12 120 John A. White Jr. 工程大厅 13 阿肯色大学 14 费耶特维尔,阿肯色州 72701 15 479-575-2615 16 nelsonc@uark.edu 17 18 摘要 19 巨噬细胞是再生医学和癌症免疫疗法等各种应用治疗的有希望的目标。由于其可塑性,巨噬细胞可以在最小的环境变化下从非活化状态转变为活化状态。为了使巨噬细胞在各自的应用中有效,有必要筛选表型变化以阐明细胞对不同运载工具、疫苗、小分子和其他刺激的反应。我们基于 NF- κ B 的激活创建了一种灵敏且动态的高通量巨噬细胞筛选方法。对于该报告基因,我们将 mCherry 荧光基因置于炎症启动子的控制之下,该启动子会募集 NF- κ B 反应元件来促进巨噬细胞炎症反应期间的表达。我们根据巨噬细胞炎症反应的关键标志物(包括 TNF- α 细胞因子释放和炎症和非炎症细胞表面标志物的免疫染色)来表征炎症报告基因。利用炎症报告基因,我们还能够创建 LPS 剂量曲线来确定报告基因的动态范围,并通过对刺激与非刺激处理的报告细胞进行时间点分析来确定报告基因对刺激的敏感性。然后,我们使用报告细胞系来确定递送效率和对不同病毒和非病毒基因递送载体的炎症反应。这里开发的筛选技术 34 提供了一种动态、高通量筛选技术,用于确定 35 小鼠巨噬细胞对特定刺激的炎症反应,并深入了解小鼠 36 巨噬细胞对不同病毒和非病毒基因传递方法的炎症反应。 37 38 简介 39 巨噬细胞是吞噬细胞,负责防御外来入侵者并维持 40 所有器官和组织 1-3 的体内平衡。根据微环境,巨噬细胞会改变功能 41 以响应局部需要。巨噬细胞的可塑性导致形成异质性 42 巨噬细胞表型群以应对情况,无论是防御、维持还是在 43 激活状态之间转换。巨噬细胞作为肿瘤相关巨噬细胞 (TAMS) 在肿瘤和 44 体内再生过程发挥作用。对于许多癌症来说,巨噬细胞在肿瘤 45 微环境中丰富,TAMS 负责促进转移、免疫抑制和 46 促进侵袭和血管生成 4 。巨噬细胞还负责维持从最初的炎症到清除外来入侵者的愈合过程,募集必要的免疫细胞,以及在再生的最后阶段解决愈合过程 5–9 。 49 50 巨噬细胞由于其在活化 51 状态之间切换的能力,可以参与各种各样的活动。对巨噬细胞极化状态的理解在不断发展,在最基本的层面上 52 要么是经典的激活/炎症状态,要么是激活/抗炎状态。这些 53 状态也被描述为 M0(静息)、M1(炎症)和 M2(抗炎)。由于 54 它们的实用性,巨噬细胞已被用于许多不同的应用,从肿瘤学的细胞疗法到再生中局部环境的重新编程 10–16 。虽然巨噬细胞提供了 56
这本由该课程教师编写的本科免疫学教科书为当前的科学发现概念提供了实验背景,强调了重要的进展,并为初学学生提供了教学支持。新版进行了全面更新,包括关于先天免疫的新章节。第 1 部分:免疫系统和先天免疫 * 免疫系统简介 * 免疫系统的细胞、组织和器官 * 先天免疫机制 * 补体 * 免疫防御中的单核吞噬细胞 第 2 部分:适应性免疫反应 * T 细胞受体和主要组织相容性复合体分子 * 抗原呈递 * 细胞介导的细胞毒性 * B 细胞发育和抗体反应 * 抗体 * 免疫耐受 * 免疫反应的调节 * 组织中的免疫反应 第 3 部分:防御传染性病原体 * 对病毒的免疫力 * 对细菌和真菌的免疫力 * 对原生动物和蠕虫的免疫力 * 疫苗接种 第 4 部分:免疫缺陷 * 原发性免疫缺陷 * 艾滋病、继发性免疫缺陷和免疫抑制第五部分:针对组织的免疫反应 * 自身免疫和自身免疫性疾病 * 移植和排斥 * 对癌症的免疫力 第六部分:超敏反应 * 速发型超敏反应 (I 型) * 超敏反应 (II 型) * 超敏反应 (III 型) * 超敏反应 (IV 型) Kuby 免疫学由 Jenni Punt、Sharon Stranford、Patricia Jones 和 Judy Owen 编写,是一本开创性的教科书,它将实验重点与教学特点相结合,帮助学生理解基本概念。新版本经过全面更新,增加了关于先天免疫的新章节,同时仍然关注免疫反应的全貌。 哈弗福德学院的教职员工获得了无数教学奖,包括美国免疫学家协会颁发的著名服务奖。其中一位著名人物是 Sharon Stanford,她在费城德雷塞尔大学获得微生物学和免疫学博士学位。在牛津大学和加州大学旧金山分校完成博士后研究后,她加入曼荷莲学院担任助理教授,后来成为生物科学系副教授。与此同时,Patricia Jones 担任斯坦福大学 Nancy Chang 博士生物学教授,自 2000 年以来负责各种行政职务,包括负责教师发展和多样性的副教务长。Judith Owen 自 1981 年以来一直在哈弗福德学院任教,担任自然科学 Elizabeth Ufford Green 主席,并担任美国免疫学家协会等组织的领导职务。Jenni Punt 于 1996 年被任命为哈弗福德学院的教师,在那里,她研究 T 细胞发育,之后进入哥伦比亚大学内外科医学院和宾夕法尼亚大学兽医学院任职。Sharon 是波莫纳学院的生物学教授,她在那里探索影响免疫缺陷易感性的免疫标志物并研究包容性 STEM 计划。她在德雷塞尔大学研究多发性硬化症,之后在牛津大学和加州大学旧金山分校担任博士后研究员,从事移植免疫学研究。Sharon 后来加入曼荷莲学院,任职 12 年后搬到波莫纳学院。她的教学内容包括细胞生物学、免疫学和研讨会。Pat Jones 是斯坦福大学的全职教授,担任人文和科学领域的 Nancy Chang 博士教授。她以优异的成绩获得了约翰霍普金斯大学的生物学博士学位,曾在加州大学旧金山分校和斯坦福大学医学院担任博士后研究员。 Pat 曾获得本科教学奖,担任过主管教师发展和多样性的副教务长,并指导过斯坦福免疫学。Judy Owen 是哈弗福德学院的 Elizabeth Ufford Green 自然科学教授,教授生物化学和免疫学课程。她获得了宾夕法尼亚大学的博士学位,并在 Peter Doherty 博士的指导下从事病毒免疫学的博士后研究。Judy 曾获得过教学奖,包括美国免疫学家协会颁发的卓越指导奖,并参与了学院的课程开发。Jenni Punt 和 Judy Owen 共同开发了第一个 AAI...免疫学课程现已列入年度计划她获得了宾夕法尼亚大学的博士学位,并在 Peter Doherty 博士的指导下从事病毒免疫学的博士后研究。Judy 获得过教学奖,包括美国免疫学家协会颁发的卓越指导奖,并参与了整个学院的课程开发。Jenni Punt 和 Judy Owen 共同开发了第一个 AAI... 免疫学课程现已列入年度计划她获得了宾夕法尼亚大学的博士学位,并在 Peter Doherty 博士的指导下从事病毒免疫学的博士后研究。Judy 获得过教学奖,包括美国免疫学家协会颁发的卓越指导奖,并参与了整个学院的课程开发。Jenni Punt 和 Judy Owen 共同开发了第一个 AAI... 免疫学课程现已列入年度计划
ssouth@uoregon.edu 披露:Sanique South (N)、Yan Carlos Pacheco (N)、Levi Wood (N)、Nicholas Hannebut (N)、Cindy Brawner (N)、Matlock Jeffries (N)、Nick Willett (N) 简介:全球有数百万人患有创伤后骨关节炎 (PTOA),它是美国导致残疾的主要原因之一。此外,目前尚无已知的治愈方法或疾病改良疗法来阻止 PTOA 进展。细胞疗法在临床前研究中通常显示出巨大的潜力;然而,临床试验显示结果差异很大。这种差异被认为部分来自供体之间细胞效力的高度异质性以及宿主环境的多变性。了解供体人类间充质细胞 (hMSCs) 的可靠性和效力是确保 PTOA 获得一致和优化的治疗结果的关键步骤。 DNA 甲基化和去甲基化在调节 MSC 再生和免疫调节中发挥作用。然而,甲基化在 MSC 调节中的确切作用,以及基线表观遗传模式是否有助于预测关键治疗特性尚不完全清楚。为了弥补这些知识空白,本研究旨在基于基线表观遗传特征和结构结果建立供体 hMSC 治疗效力的预测模型,以研究可修改的细胞靶点,确保细胞治疗获得更好且一致的治疗结果。我们假设,与预测的治疗效果较差的 hMSC 相比,预测的治疗性 hMSC 将表现出独特的表观遗传特征。方法:体外研究:从 RoosterBio 和 Lonza 购买骨髓衍生的 hMSC。将来自 12 位供体的 hMSC 培养 24 小时(RoosterNourish TM -MSC 培养基,RoosterBio;MSCGM™ 间充质干细胞生长培养基,Lonza)。收获细胞并使用 Qiagen DNEasy 试剂盒提取 DNA。DNA 经过亚硫酸盐转化(每个样本 500ng,Zymo EZ DNA 甲基化试剂盒),然后加载到 Illumina Infinium HumanMethylation EPIC 阵列上,该阵列可以量化整个基因组中的 >850,000 个 CpG 位点,包括外显子、内含子和基因间区域。使用 R(v. 4.4.0)进行统计分析。使用 ChAMP 包(v.3.14)加载和处理原始 .IDAT 文件。首先加载原始阵列数据,并将 CpG 位点甲基化数据转换为 beta 值(0-1 甲基化值估计值表示给定 CpG 位点甲基化与未甲基化探针强度之比)。然后使用默认选项的 champ.norm 函数使用 beta 混合分位数归一化程序对 beta 值进行归一化。排除以下情况:(1)检测 P ≥0.01 的探针、针对非 CpG 位点的探针、位于性染色体上的探针,以及在CpG 探针 3' 端 5bp 范围内具有已知单核苷酸多态性的探针,其次要等位基因频率≥1% [1] (N=158,841)。对于模型开发,使用具有自动特征选择的 glmnet 包 (v. 2.0-16) 开发了弹性网络正则化广义逻辑模型。通过 3 倍内部交叉验证调整模型,并记录性能特征。由于发现几个 CpG 位点是再生能力的完美预测因子,我们随后执行了逐步减少数据集的方法,其中,在每一轮开发之后,从数据集中删除最终模型中包含的特征并重新进行开发,总共 50 轮开发周期。所有 50 轮中的所有模型都表现完美(AUC=1.0),可能是因为样本量相对较小而过度拟合。使用在 MATLAB(Mathworks)中生成的 PLSDA 和 PLSR 模型来识别治疗性 hMSC,并使用分泌的细胞因子水平读数作为独立变量,以不同的 hMSC 供体/治疗作为二元结果变量,对来自初始体外研究的 z 分数数据进行训练。使用已建立的内侧半月板横断面 (MMT) 临床前大鼠模型,在 PTOA 的体内临床前模型中验证了预测的治疗性 hMSC(图 1A)。结果:初步研究的数据用于训练 PLSR 预测统计模型。预测模型预测前瞻性地揭示了沿 LV 轴 1 分离的大约六个供体的 hMSC,预测与治疗效果相关,从而预测治疗效果较差和治疗效果较强的供体;因此,6 个样本被指定为可能的“反应者”,6 个被指定为可能的“无反应者”(图 1B)。在甲基化分析中,我们发现在 50 轮开发周期中选定了 119 个 CpG 位点。所有位点均存在显著差异甲基化(P 值 7.5E-8 至 4.1E-4)。与无反应者相比,应答者中大约一半的 CpG 为高甲基化(n=45),其余为低甲基化(n=43)。应答者与无反应者之间平均甲基化值差异最大(Δβ 最高)的 CpG 位点包括 cg14705220(Δβ=0.25 应答者-无反应者 [应答者高甲基化],P =4E-4)和 cg09382002(Δβ=-0.23,P =3E-4 [应答者低甲基化]),图 2。然后,我们对与这些差异甲基化位置相关的基因进行了通路分析。 119 个 CpG 定位到 88 个已知基因。这些基因在 T 细胞信号转导(IL-7 信号转导通路,P =2.27E-3)、吞噬细胞:NK 细胞相互作用(IL-15 产生,P =8.13E-3)和 B 细胞信号转导(April 介导信号转导 P =8.69E-3、B 细胞活化因子信号转导 P =9.09E-3)中的重要通路中富集。有趣的是,差异甲基化基因组位置中富集程度最高的基因网络集中在几个已知的 OA 效应物周围,包括 NFkB 复合物、组蛋白去乙酰化酶 (HDAC) 和机械感受器 (TRPV1) 等 (图 3)。讨论:甲基化数据结果支持了我们的假设,即预测的治疗性 hMSC 将表现出独特的表观遗传特征。我们的数据表明,基于来自 hMSC 的混合细胞 DNA 甲基化数据的模型可以很容易地区分可提供治疗益处的细胞产品和不会提供治疗益处的细胞产品。这些差异甲基化模式中涉及的基因在先前在 OA 中描述的途径中富集。意义/临床意义:DNA 甲基化分析可能有助于在膝关节 OA 关节内注射前筛选 hMSC 供体,以最大限度地提高临床益处。此外,进一步研究我们发现的驱动表观遗传差异的个体细胞亚群可能会揭示出可用于开发未来膝关节 OA 疗法的新途径。致谢:本研究得到了俄勒冈州吴仔人类表现联盟的支持。