摘要:成熟的B细胞通过类开关重组(CSR)显着使免疫球蛋白(IG)生产多样化,从而允许遥远的“开关”区域的连接。CSR是由Activation诱导的脱氨酶(AID)启动的,该酶(AID)靶向在转录的靶向S区域的单链DNA中充分暴露的细胞糖苷,具有对WRCY基序的特定亲和力。在MAM-MALS中,富含G的序列还存在于S区域,形成有利于CSR的规范G-四链体(G4S)DNA结构。与G4-DNA(G4配体)相互作用的小分子被证明能够在B淋巴细胞中调节CSR,这要么积极地(例如核苷二磷酸激酶同工型)或负面的(例如RHPS4)。G4-DNA也与转录的控制有关,由于它们对CSR和转录调控的影响,富含G4的序列可能在B细胞恶性肿瘤的自然史上起作用。由于G4-DNA位于基因组中的多个位置,尤其是在癌基因启动子中,因此尚待澄清它如何更具体地促进生理学中的合法CSR,而不是致病性易位。G4结构在转录DNA和/或相应的转录本和重组中的特定调节作用似乎是理解免疫反应和淋巴结发生的主要问题。
1物理部,政府理工学院,Sorab-577426,印度卡纳塔克邦2物理学2,斯里尼瓦萨大学,斯里尼瓦萨大学,穆克卡,穆克卡,芒格洛尔,卡纳塔克州,印度,印度,印度卡纳塔克州,作者的作者。 Ferdinand Runge于1834年首次发现。PANI金属氧化物复合材料可以在酸性培养基中使用化学和电化学氧化聚合合成。苯胺化学聚合使用最广泛使用的启动器或氧化剂。合成的PANI复合材料对XRD进行了XRD,以了解结构修饰。紫外可见的研究表明,光学特性和介电研究显示了掺杂剂的电导率变化。关键字:导电聚合物,纳米复合材料,XRD 1。介绍数十年来,科学和研究的世界被导电聚合物的非凡电气和电子特性所吸引。这些奇迹材料,也称为本质上导电聚合物(ICP),无视塑料等传统绝缘子设定的期望。与它们的绝缘型物体不同,ICP具有出色的传导能力,其行为类似于金属或半导体[1]。这增强了各种领域的潜在应用。导电聚合物的电导率是一个频谱,涵盖了从半导体到金属的范围。这取决于特定的聚合物及其掺杂水平。进行聚合物的处理可能性与其性质一样多样化。兴奋剂是涉及将电子供体或受体引入聚合物链中的过程,它是微调这些材料的电气,光学甚至机械性能的魔术旋钮。从膜和纤维到管,这些多功能材料可以使用化学合成,电化学聚合和旋转涂层等技术制成各种形式[2-3]。这为它们集成到广泛的应用中,尤其是在灵活电子产品领域中打开了大门。在大量的ICP,聚乙炔(PA),多吡咯(PPY),聚噻吩(PTH)和聚苯胺(PANI)中,这些名称经常宽容研究论文并对未来持巨大希望。他们可以彻底改变诸如储能,太阳能电池,微电器设备,传感器甚至光电小工具等区域。聚苯胺(PANI)自1980年代以来,半硬杆聚合物以其出色的电导率和令人印象深刻的机械性能吸引了研究人员[4-5]。当用酸或其他药物掺杂时,其导电性能可用于电子应用。取决于所选的掺杂剂和氧化状态,可以调整其电导率甚至颜色,使其准备适应各种需求。与其同伴ICP相比,Pani拥有额外的魅力 - 其弹性。它对温度和光等环境因素表现出令人钦佩的抵抗力,使其成为现实世界应用的实用选择[6-7]。
Capivasertib (TRUQAP) 是一种新型口服 AKT 抑制剂,靶向 PI3K/AKT/mTOR 通路以克服晚期乳腺癌的肿瘤耐药性。Capivasertib 具有独特的吡咯并嘧啶衍生物结构,是所有三种 AKT 亚型 (AKT1、AKT2 和 AKT3) 的强效 ATP 竞争性抑制剂。本文全面介绍了 capivasertib 的合成、作用机制、物理和化学性质以及临床前和临床疗效。研究了它相对于现有治疗方法的优势、可能的副作用以及在联合治疗中的预期用途。我们还研究了管理耐药性、优化 capivasertib 的治疗优势以及使用生物标志物选择最佳患者的未来可能途径。临床前研究表明 capivasertib 与内分泌疗法和抗 HER2 药物联合使用的潜力。 FDA 最近批准 TRUQAP 与 Faslodex 联合用于 2023 年 11 月治疗晚期 HR 阳性和 HER2 阴性乳腺癌,这突显了其临床重要性。关键词:Capivasertib、AKT 抑制剂、乳腺癌、TRUQAP 简介:医疗产品 capivasertib (AZD5363) 正在研究中。阿斯利康与 Astex Therapeutics 合作(以及与 Cancer Research Te chnology Limited 和癌症研究所的合作)发现了 capivasertib。(1)。capivasertib 的第一阶段 III 期研究显示其对晚期乳腺癌具有“显着”效果,是癌症研究领域的最新重大发现。(2)一种名为 capivasertib (AZD5363) 的新型选择性 ATP 竞争性泛 AKT 激酶抑制剂对 AKT1、AKT2 和 AKT3 异构体的作用类似。临床前试验表明,无论单独使用还是与抗 HER2 药物和内分泌疗法联合使用,Capivasertib 对乳腺癌细胞系均有效,特别是对具有 PIK3CA 或 MTOR 突变的肿瘤有效。(3)凭借良好的临床前耐受性、AKT 抑制剂般的药效学特性以及与已进入临床开发阶段的其他 AKT 抑制剂相比的独特特性,AZD5363 在竞争中脱颖而出。(4)TRUQAP 供口服,提供圆形 160 毫克和胶囊形 200 毫克剂量水平,为米色、薄膜包衣、双凸片。(5)该片剂还含有交联羧甲基纤维素钠、磷酸氢钙、硬脂酸镁和微晶纤维素。薄膜包衣含有以下非活性成分:共聚维酮、羟丙甲纤维素、氧化铁黑、氧化铁红、氧化铁黄、中链甘油三酯、聚葡萄糖、聚乙二醇 3350 和二氧化钛。(6)
摘要 背景 调节性 T 细胞 (T regs) 有助于形成免疫抑制性肿瘤微环境。它们在具有高 T regs 浸润的肿瘤的建立和进展中发挥重要作用,并且是免疫疗法根除肿瘤的重大障碍。人们尝试了许多策略来消耗或阻断 T regs,尽管它们的成功率有限。方法 研究了一种靶向 CD25 的吡咯并苯二氮卓 (PBD) 二聚体的抗体-药物偶联物 (ADC) 消耗 T regs 和诱导抗肿瘤免疫的能力。在表现出表达 CD25 的 T regs 的肿瘤浸润的 CD25 阴性同基因模型中评估了 CD25-ADC 单独或与抗程序性细胞死亡蛋白 1 (PD-1) 抗体联合使用的抗肿瘤活性,并评估了其药效学和药代动力学。结果单次低剂量 CD25-ADC 在已建立的同基因实体瘤模型中产生强效而持久的抗肿瘤活性,并且次优剂量与 PD-1 阻断的组合具有协同作用。CD25 靶向 ADC 的肿瘤消除依赖于 CD8+ T 细胞,而 CD25-ADC 可诱导保护性免疫。重要的是,虽然 CD25-ADC 介导显著而持续的肿瘤内 T regs 耗竭,同时伴随着活化和增殖的肿瘤浸润 CD8+ T 效应细胞数量的增加,但全身性 T regs 耗竭是暂时的,从而减轻了对潜在自身免疫副作用的担忧。结论这项研究表明,基于 PBD 二聚体的 CD25 靶向 ADC 能够通过抗肿瘤免疫耗竭 T regs 并消除已建立的肿瘤。这代表了一种通过已知可诱导免疫原性细胞死亡的非常有效的 DNA 损伤毒素有效耗竭 T regs 的新方法。此外,这项研究为 ADC 作为免疫治疗剂的全新应用提供了概念证明,因为主要作用模式依赖于 ADC 直接靶向免疫细胞,而不是肿瘤细胞。这些强有力的临床前数据保证了对卡米丹鲁单抗特西林 (ADCT-301) 进行临床评估,卡米丹鲁单抗特西林是一种基于 PBD 的靶向人类 CD25 的 ADC,可以单独使用或与检查点抑制剂联合使用,用于已知 T regs 浸润的实体瘤。卡米丹鲁单抗特西林在部分晚期实体瘤患者中的 I 期试验 (NCT03621982) 正在进行中。
© 高等教育出版社 2023 当今世界正面临许多危机,包括气候变化、环境污染、资源稀缺和资源消耗猖獗。为了解决这些问题,有必要寻求低碳、环保和成本效益高的解决方案。解决这些挑战的一个有希望的途径是使用生物质基材料,这种材料具有许多独特的优势,包括可再生性、可生物降解性和丰富性。先进的生物质材料已经在各种应用中尝试用于解决全球问题,例如能源危机、环境污染和资源短缺。在本期特刊中,我们的目标是提高研究人员对生物质基材料领域的关注和兴趣,并促进先进生物质材料科学和技术的发展。这些先进的生物质基材料是传统石化材料的可持续替代品。通过促进对先进生物质基材料的研究,本期特刊旨在推进跨学科研究的前沿,并为更可持续的未来铺平道路。本期特刊有助于我们了解基于纤维素、木质素和其他生物质的先进功能材料。为了更好地说明针对性,将出版两期(第17卷第7期和第8期)。研究论文展示了这些材料的合成、改性、性能、功能以及在能源、环境和其他新兴领域的潜在应用,强调了它们在应对紧迫的全球挑战中的重要性。综述探讨了纤维素在低介电常数绝缘纸和锂离子电池中的作用,以及离子液体在生物质基材料合成和应用中的潜在优势。在能源存储和转换领域,先进的生物质材料在解决材料和设备层面的挑战方面发挥了关键作用。纤维素基聚合物电解质复合材料是一种能很好地保持形状的材料。当与纳米碳材料结合时,它们表现出良好的封装性能和更高的热能存储能力。通过烷基链桥接将酚羟基引入木质素磺酸盐(LS),再将改性后的LS掺杂到PEDOT中,可以增强PEDOT的电子传输能力。采用磷酸盐辅助水热法制备的木质素多孔碳可作为超级电容器电极,具有较高的比电容和良好的循环性能。采用一步“浸渍聚合”法制备了聚吡咯(PPy)与纤维素纳米纤维(CNF)的复合薄膜电极,纤维素微纤维和纳米纤维在锂离子电池中的应用,综述了纤维素微纤维和纳米纤维在高能量密度电池中的应用,并介绍了用于高能量密度电池的高质量负载纸电极的新发展趋势和最新进展与方法。
背景:酪氨酸激酶抑制剂(TKI)在多种肿瘤的治疗中取得了革命性的成果,每年都有大量关于该主题的研究发表,一些已发表的综述为我们了解TKI提供了很大的价值,但对TKI研究的知识结构、文献计量分析和可视化结果的研究尚不足。目的:本文旨在通过共词分析和文献可视化的方法,探究TKI研究的知识结构、热点和演变趋势,帮助该领域的研究者全面了解现状和趋势。方法:从Web of Science中检索2016年至2020年发表的所有关于TKI的学术论文,通过统计论文中的关键词,通过提取关键词间的共现关系生成共词网络,然后通过计算整体网络和局部网络的网络指标,对社区进行细分,识别TKI研究的子方向。绘制了关联网络拓扑结构,包括TKIs子方向内和子方向之间的网络,揭示不同子方向之间的关联和结构。此外,我们结合关键词的爆发权重和持续时间来检测关键词爆发,以揭示TKIs研究重点的变化。最后,生成演化脉络和战略图以揭示TKIs研究趋势。结果:从5584篇论文标题中获得6782个独特词(总频率26,175)。最后,经讨论,以10为阈值,选取296个高频词,总频率占比65.41%(17,120/26,175)。对爆发学科的分析发现,TKIs研究的爆发词数量每年都在变化,尤其是在2019年和2020年,例如HER2、吡咯替尼、二代测序、免疫治疗、ALK-TKI、ALK重排。通过网络计算,TKIs共词网络分为6个社区:C1(非小细胞肺癌)、C2(靶向治疗)、C3(慢性粒细胞白血病)、C4(HER2)、C5(药代动力学)、C6(ALK)。脉络图显示出非小细胞肺癌脉络、慢性粒细胞白血病脉络、肾细胞癌脉络、慢性淋巴细胞白血病脉络等几个清晰且连续的演变趋势。在战略图中,C1(非小细胞肺癌)为核心方向,位于第一象限,C2(靶向治疗)正好位于第一与第四象限的交界处,即C2处于发展阶段;C3(慢性粒细胞白血病)、C4(HER2)、C5(药代动力学)均尚未成熟,位于第三象限。结论:通过共词分析和文献可视化,揭示了2016年至2020年TKIs研究的热点、知识结构和发展趋势。TKI研究主要集中于针对不同肿瘤的靶向治疗,
药学学士(KU)、药学硕士 (药物化学) (AU)、博士D (KU):博士研究合成作为抗过敏剂的色酮-3-甲醛新衍生物。在德国雷根斯堡大学和法兰克福 ASTA medica AG 进行博士后研究,在 DAAD 奖学金资助下合成作为白介素抑制剂的新喹诺酮。1991 年 4 月加入瓦朗加尔卡卡蒂亚大学药学学院,担任教员。担任该学院院长。目前担任学院院长。还在利比亚担任教授一年。学术和研究成果:他的研究重点是各种杂环药物的设计、合成及其抗癌、抗糖尿病、抗炎和抗菌(包括结核病)活性的药理学评价。他致力于研究 4, 3′ 和 4, 4′ 双吡啶单肟季盐作为乙酰胆碱酯酶再活化剂的合成和生物活性及其作为农药中毒解毒剂的用途。还致力于苯氧基嘧啶基咪唑、新型取代苯并咪唑衍生物和吡唑基脲衍生物作为 p38 激酶抑制剂的分子建模研究,新型嘧啶基苯并噻唑胺衍生物的合成和抗炎活性。进行了新的二氢吡啶衍生物作为人类MRP1抑制剂的分子对接研究,并在体外研究中鉴定出一些具有强效多药耐药逆转剂活性的分子。我们制备了新的1,4-二氢吡啶,与一线药物吡嗪酰胺相比,具有显着的抗结核活性(MIC = 12.5-25 μg/mL)。我们可以在《欧洲药物化学杂志》(2011,46(5),1564-71)上发表这项工作。与奥斯马尼亚大学合作,合成了一系列新型2-(取代2H-色满-3-基)-5-芳基-1H-咪唑衍生物,作为抗血管生成和抗癌剂。合成了一系列新的吡咯并[2,3-d]嘧啶衍生物,并针对人类结肠癌细胞系进行了评估。他还参与了法兰克福大学氟化非咪唑组胺 H3 受体拮抗剂的合成。其他贡献:在同行评审期刊上发表了约 45 篇研究论文,并指导了 08 名博士生。他曾担任药学研究委员会主席。作为 AICTE 质量改进计划 (QIP) 的一部分,他作为药学教师召集人开展了几个为期两周的员工发展计划。贡土尔阿查里亚纳加朱纳大学和卡卡蒂亚大学学术委员会成员,他还担任 EAMCET 和 PGCET 的地区协调员 (瓦朗加尔)。奖项和荣誉:ICMR(印度医学研究理事会)和 UGC 的初级研究员以及德国学术交流中心 (DAAD) 研究员。
微生物生产颜料及其在食品和化妆品行业中的应用Pooja Mistry 1,Trupti Pandya 2 Bhagwan Mahavir基础和应用科学学院摘要:某些合成染料的负面影响正在推动对自然色的需求。细菌和真菌色素提供了一种自然产生的颜色的方便替代供应。它们比其他天然颜料具有许多优势,例如快速开发,简单处理和对天气的免疫力。该研究的主要目标是分离产生土壤的色素细菌。使用多种纯培养技术维持孤立的菌落。颜料可以放大许多应用中使用的颜色的现有调色板。最大颜料产量的各种参数是环境和健康问题,相比之下,微生物颜料是环保的,并在纺织工业中使用,微生物来源的色素是一个很好的选择,可以很容易地以高收率产生。被称为颜料的化学物质负责吸收可见光。称为颜料的化合物经常在业务中使用。由于它们的无毒构成,某些微生物制造颜色用于药品,化妆品,食品,染料和其他工业用途,因此对环境有益。天然食品着色剂是由微生物商业生产的。发酵提供了几种好处,包括更便宜的生产和简单的提取;改善的菌株可产生与季节无关的大量基本材料供应。(Rymbai等,2011)。关键字:微生物色素,土壤样品,细菌,纺织品和染料1。简介合成色优于稳定性,易于应用和成本效益的天然色素。近年来,天然色素是从食品,染料,化妆品和药品制造实践中分离出来的(Sanjay等,2007)。自然色素的主要来源是从动物,植物(Joshi等,2003)和微生物(Nagpal等,2011)获得的。微生物是可生物降解,可再生,环保的,并以其在纺织品染色,食物成分,化妆品和药物方面的用途而闻名(Shahid等,2013)。微生物的发展可以通过强大的状态来培养,并降低了原油或现代自然废物的特征。微生物可以在适度的培养基中有效发展,并快速速度,它们的发展是气候条件的自主。微生物产生多种色素包括聚酮化合物,类胡萝卜素,苯乙烯,酰基苯酚,吡咯和蒽醌,但这些颜料大多数除了类胡萝卜素和聚酮化合物(Stich等人,2002年)都对人有毒。食物材料的新鲜度是由其安全性和颜色表示的,也表现出良好的感官和美学价值。细菌色素因其对人类和环境的无害影响而使用(Ahmad等,2012)。在食品行业中纯化的微生物色素用作食品添加剂,具有抗氧化剂,颜色增强剂等特性。微生物是有机酸,酶,维生素,氨基酸和有机酸的良好来源。从微生物来源中提取色素,然后将其用作食用色素是合成染料的绝佳替代品(Malik等人,等等,2012年)。在易于使用的廉价培养基中,细菌物种创造的主要好处是快速,易于生长,完全没有大气条件。
传统的碳基能源转换和利用方式过于粗暴,给生态循环带来了不可逆转的破坏。对清洁、高效和可再生能源的需求促使政府和研究人员开展研究项目,旨在通过理论和技术上的科学突破,为实现能源可持续性做出贡献。例如,2019年,国家自然科学基金启动了“有序能量转换”(OEC)基础科学中心项目。该项目由西安交通大学动力工程多相流国家重点实验室郭烈金教授牵头,汇集了中国许多顶尖的能源相关研究团队,特别是在太阳能制氢/燃料领域。为了进一步推进太阳能制氢/燃料领域的研究,《能源光子学杂志》第10卷第2期的这一专题包括了八篇原创研究文章,探讨了太阳能制氢或太阳能制燃料的基础和应用方面。本专题旨在介绍用于光催化、光电化学和光伏太阳能氢/太阳能液体燃料生产的先进纳米材料、器件和集成系统的研究,以及与界面和表面过程和反应机理相关的结果。本专题中有几份报告代表了这些领域。Naixu Li 等人通过合成具有片剂形态的 Ni 掺杂介孔 TiO 2 纳米晶体以及 Ag 助催化剂证明了光催化 CO 2 还原的增强效果。Jiangang Jiang 等人报告了通过两步水热法使用不同的镉前体改进一系列 3-D ZnO/CdS 光电极,从而获得了具有开放多孔形态的 3-D 结构。Yuzhou Jiang 等人研究了混合牺牲剂对两种典型光催化剂(即 gC 3 N 4 和 TiO 2 )的氢释放的影响。张建等报道了具有Z型异质结的Fe 2 O 3 ∕gC 3 N 4 复合材料的优异光催化性能。郭鹏辉等比较了不同暴露面的ZnO的光学性能、表面电荷状态和光催化行为。贾娜娜等研究了不同热解温度对ZIF-67/海藻酸纤维制备的碳纤维涂覆Co@N掺杂多孔碳电催化活性的影响。本部分还介绍了更多应用,包括几篇关于光传输和光热系统研究的报告。张林琪等通过分析不同天气条件下的气溶胶粒子样本,展示了太阳辐射传输和参与介质的特征。白波等报道了一种光热聚甲基倍半硅氧烷-乙烯基三甲氧基硅烷-聚吡咯干凝胶,可通过一锅合成途径高效分离太阳能驱动的粘稠油/水。希望本专题中介绍的文章能够提供一些关于太阳能氢/燃料生产方面的代表性快照,从材料科学到系统工程。
Thiolutin has complex effects in vivo but is a direct inhibitor of RNA Polymerase II in 1 vitro 2 Chenxi Qiu 1,6 , Payal Arora 1,2 , Indranil Malik 1,7 , Amber J. Laperuta 3,8 , Emily M. Pavlovic 4,9 , Scott 3 Ugochukwu 5 , Mandar Naik 1,10 , Craig Kaplan 2 4 5 1 Department德克萨斯州A&M大学生物化学与生物物理学,德克萨斯州大学站6 77843,美国7 2宾夕法尼亚州匹兹堡大学生物科学系15260,美国8 3 Stevenson大学,Stevenson University,Stevenson,Stevenson,Stevenson,Stevenson,MD 21153,MD 21153,M. 9 4 44 HAM HAM HAM HAM MARCOS,SAN RICHOND,美国4774,4774,10 55.4774,10 55.47344,10 55.47344.4774 78666美国11 6现在的地址:哈佛医学院,马萨诸塞州波士顿,马萨诸塞州02115,美国12 7现在的地址:生物技术系印度印度技术研究所海得拉巴,海得拉巴13号,桑加里德迪,塔兰加纳,印度TERANGANA,印度14 8现在地址:生物科学系:匹兹堡,匹兹堡,帕特斯堡,帕特斯堡,帕特斯堡,帕特斯堡,帕特斯堡,帕特斯堡,1522117,922117, Duluth,MN 55812,USA 17 10当前地址:分子药理学,生理学和生物技术部,布朗大学18号,普罗维登斯,RI 02912,美国19 20 21摘要22硫醇素是一种自然产物转录抑制剂,具有未解决的作用方式。硫醇蛋白23和相关的二硫代吡咯酮纯霉素螯合Zn 2+和先前的研究得出结论24,RNA聚合酶II(POL II)在体内抑制是间接的。在这里,我们提出了化学遗传学25和生化方法,以研究硫醇蛋白在糖疗法中的作用方式26酿酒酵母。我们识别出改变对硫四醇素敏感性的突变体。31抑制作用需要MN 2+,并且由于多余的DTT消除了其32个影响,因此需要适当的硫醇素。我们提供了遗传证据27硫醇素在体内引起硫氧还蛋白的氧化,并且硫醇素都诱导氧化28胁迫,并与包括Mn 2+和Cu 2+在内的多种金属在功能上相互作用,而不仅仅是Zn 2+。29最后,我们在体外表现出直接抑制RNA聚合酶II(POL II)转录起始,以支持经典研究,硫四醇素可以直接在体外抑制转录。易于停止,如果绕过抑制作用,可以在体外观察到缺陷。33硫四列霉素对体内POL II占用率的影响广泛,但主要影响与34个先前的TOR途径抑制和胁迫诱导的观察结果一致,这表明硫四醇素的使用35在体内应限于其作用模式的研究,而不是作为实验工具。36 37