摘要:吡咯喹啉醌二钠盐 (PQQ) 是一种红色三水合物晶体,2008 年被 FDA 批准为新食品成分。现在,它已在日本和欧盟被批准为食品。PQQ 具有氧化还原特性,具有抗氧化、神经保护和线粒体生物合成作用。PQQ 的基线摄入量被认为是 20 毫克/天。PQQ 摄入可降低人体血液中脂质过氧化物的水平,表明其具有抗氧化活性。在认知功能领域,已经进行了双盲、安慰剂对照试验。据报道,在一般记忆、言语记忆、工作记忆和注意力方面都有各种改善。此外,对年龄范围广泛的人群进行分层分析发现,年轻人(20-40 岁)具有独特的效果,而老年人(41-65 岁)则没有观察到这种效果。具体来说,8 周后,年轻人的认知灵活性和执行速度提高得更快。PQQ 和辅酶 Q10 联合使用进一步增强了这些效果。在一项开放标签试验中,PQQ 被证明可以改善睡眠和情绪。此外,还发现 PQQ 可以抑制皮肤水分流失并增加 PGC-1 α 表达。总体而言,PQQ 是一种具有多种功能的食物,包括对大脑健康有益。J. Med.Invest.71 :2024 年 2 月 23-28 日
摘要:通过电吡咯(PPY)或聚(3,4-乙基二氧噻吩)(PEDOT)成功制造了柔性电活性纤维素的底物(PEDOT),在硫酸钠硫酸钠(SDS)的存在下,在铂金糖纤维蛋白纤维素蛋白酶底物上。结果表明,将导电聚合物均匀地沉积在铂涂层的纤维素底物上,而不会损害基质的sublosro粗糙度地形。实际上,通过在纤维素纸的各个纤维上沉积导电聚合物的沉积,这在调节细胞粘附,增殖和迁移方面非常重要。通过支持永生的人角质形成细胞(HACAT细胞)的附着和增殖,各种基于纤维素的论文表现出良好的机械和结构特性以及良好的细胞相容性。此外,事实证明,铜(Cu 2+)和锌(Zn 2+)离子已成功地掺入这些PPY-和PEDOT-纤维素底物中。PEDOT导致Cu 2+和Zn 2+离子的掺杂较高,这通过离子释放研究证实。与PPY-纤维素底物相比,PEDOT-纤维素底物表现出明显更高的机械性能,更好的初始细胞附着和更高的电化学电容。总体而言,结果表明,PEDOT-纤维素底物可能是智能皮肤敷料的更好选择,皮肤和人造设备之间的集成接口或可植入的电子材料。
化学名称:1-胞戊丙基-6-氟-1,4-二氢-8-甲氧基-7 - [((4AS,7AS)-octahydro-6h-吡咯洛洛尔[3,4-b]吡啶素-6- 6-基] -4-4- oxo-3-oxo-3- oxo-3- quem-3- quiinolinecarboxylicic酸,monohydrochlorice。Moxifloxacin与其他喹诺酮不同,因为它在8个位置具有甲氧函数,而S,S,S,S,S,S,S,S,S,S,S,S,S,S-S-Conmenonyl环中的一个位置部分。盐酸莫西法沙星是略带黄色至黄色的晶粉。每个ML的Vigamox®溶液中含有5.45 mg莫西法沙星盐酸盐,等于5 mg莫西沙星碱基。包含:活动:莫西沙星0.5%(5 mg/ml);防腐剂:无。产品是自保存的。无活动:氯化钠,硼酸和纯净水。还可能包含盐酸/氢氧化钠以调节pH值。Vigamox®溶液是等值量的,在pH 6.8处配制,渗透压约为290 mosm/kg。临床药理学:药代动力学/药效学:在局部眼部给药Vigamox®之后,莫西法沙星被吸收到全身循环中。在21名男性和女性受试者中测量了莫西法沙星的血浆浓度,这些受试者每天3次接受双侧局部眼剂量的Vigamox®溶液4天。平均稳态C最大和
3. 翁贝托·达莱桑德罗教授,英国伦敦卫生与热带医学院冈比亚医学研究委员会部主任 • 研究支持——所有利益均非个人、非特定且具有财务意义。* (a) 1b 期多阶段恶性疟原虫疟疾疫苗研究的首席研究员,该研究评估血液阶段候选疫苗 RH5.2 病毒样颗粒 (VLP) 在 Matrix-MTM 中以及红细胞前期候选疫苗 R21 在 Matrix-MTM 中单独和联合使用对冈比亚成人和婴儿的安全性和免疫原性(正在进行 - 2025 年 3 月)。 (b) 由应用全球健康研究 MRC UKRI 资助的季节性 R21 大规模疫苗接种以消除疟疾的首席研究员(正在进行 - 2026 年 6 月)。 (c) 牛津大学资助的一项多中心随机对照非劣效性试验的首席研究员,该试验旨在比较三联青蒿素联合疗法与一线 ACT + 安慰剂在治疗非洲无并发症恶性疟疾方面的疗效、安全性和耐受性(2023 年 6 月结束)。 (d) 吡咯那啶-青蒿琥酯 (Pyramax) 对无症状疟疾感染者的安全性和有效性的临床试验的首席研究员。冈比亚医学研究委员会 (MRC) 于 2018-2019 年从疟疾药物基金会 (MMV) 获得了这项工作的资金。 • 顾问 – 为默克医疗保健集团开发 M5717 新型抗疟药(2022 年至今)。此兴趣被评估为个人、非特定和非财务重大。*
摘要:基于多吡咯(PPY)的纳米复合材料对科学界引起了极大的兴趣,因为它们在设计最先进的工业应用方面有用,例如燃料电池,催化剂和传感器,能量设备,尤其是电池。但是,这些材料的商业化尚未达到令人满意的实施水平。为多种电池应用设计和合成基于PPY的复合材料的设计和合成需要更多的研究。由于对环境友好,成本效益和可持续能源的需求不断上升,电池应用是解决能源危机的重要解决方案,它利用了合适的材料(例如基于PPY的复合材料)。在导电聚合物中,PPY被认为是一类重要的材料,因为它们的合成易度,低成本,环保性质等。在这种情况下,由于其纳米结构特性和独特的形态形态,基于PPY的纳米复合材料可能非常有前途,这对于它们在电池应用中的应用至关重要。基于PPY的纳米复合材料的此类特征使它们对于下一代电极材料特别有希望。但是,用于电池应用的适当基于PPY的纳米复合材料的设计和制造仍然是一个挑战的研究领域。本评论论文介绍了当前用于电池应用中基于PPY的复合材料以及其形态形态的进展。我们在这里讨论了在合成不同的基于PPY的复合材料的最新进展,包括PPY/S,PPY/MNOX,MWCNT/PPY,V 2 O 5/PPY,CL-DOPED PPY/RGO和Fe/α-MNO-MNO 2 @pppy Cosies,通过聚合使用多种电池应用。本评论中提出的见解旨在为电池技术中基于PPY的复合材料的未来开发提供全面的参考。
摘要:通过血脑屏障(BBB)输送药物是一个重要的挑战。尽管目前采取了BBB规避的策略,但纳米技术仍提供了前所未有的选择性,用于结合选择性递送,改善生物利用度,药物保护和增强的药代动力学专业生物。壳聚糖纳米载体允许在细胞和亚细胞水平上制定更有效的策略。硼中子捕获疗法(BNCT)是一种靶向化学放射性治疗技术,可以通过选择性标记为10 B的癌细胞选择性耗尽癌细胞,然后用低能中子进行照射。因此,封闭有效BNCT药丸团的基于聚合物的纳米递送系统的组合可能会导致选择性递送到BBB以外的癌细胞。在这项工作中,评估了基于Carborane官能化的Decalizatizational decalizatizatization型的生物染色阳离子(DLC)的合成的新型硼酸化剂,以确保肿瘤细胞的安全性和选择性靶向。然后将化合物封装在壳聚糖构成的纳米载体中,以通过BBB促进渗透性。此外,将壳聚糖与多吡咯结合使用,形成智能复合纳米胶囊,预计将释放其药物负荷,并在pH中变化。结果表明,通过Carboranyl DLCS实现了更具选择性的硼递送。最后,初步细胞研究表明,在壳聚糖纳米胶囊中未检测到毒性,从而进一步增强了其作为脑肿瘤BNCT潜在递送载体的生存能力。
摘要。人表皮生长因子受体 2 (HER2) 过度表达的乳腺癌 (BC) 与多发性远处转移风险增加和预后不良密切相关。Disitamab Vedotin (RC48) 是一种新开发的靶向 HER2 的抗体药物偶联物,由赫妥珠单抗通过可裂解接头与单甲基金诺汀 E 偶联而成。临床前研究表明,其在 HER2 阳性和 HER2 表达较低的 BC 模型中具有强大的抗肿瘤活性。本研究报告了一名 60 岁绝经后女性的病例,该女性因疲劳而患上右侧 BC 肿瘤。诊断为 IV 期 (cT4N3M1) 激素受体 (HR) 阳性和 HER2 阳性浸润性导管癌,伴有全身转移(包括脑)。患者最初接受26个周期的一线抗HER2靶向治疗加化疗(曲妥珠单抗+帕妥珠单抗+白蛋白结合型紫杉醇)联合全脑放疗,疗效良好,但颅外及颅内病灶均出现进展(PD),最终在5个连续周期的维持治疗中进展,随后继续接受4个周期的二线治疗(曲妥珠单抗+吡咯替尼+卡培他滨),直至血液肿瘤标志物CEA、CA15-3、CA125升高,全身PD得以缓解。
光射流。典型的光阳极,dibenzo [b,d]噻吩磺酸(FSO)单体,与额外的富含电子或电子decoient coenters共同聚合,即,苯烯,吡啶基,吡咯乙烯和四苯二苯,形成d - 一个基序。此外,制备了FSO的均聚物,发现水是水氧化的最高性能。随后,该FSO光阳极进一步用于氧化有机合成。我们能够将光阳极用于两个模型反应;特定的cally,通过氧化苯胺的氧化和通过甲基苯基硫DE的氧化和相应的选择性合成N-苯二烯苯甲酰胺的合成,并分别实现了高达92%和99%的选择性。进行了稳态和操作测量中的测量,以建立结构 - 聚商结构之间的性质关系及其在光阳性反应中的性能。在这些系统中,主动位点确定了这种转换的速率:通过测量结果,我们确定FSO光轴在其磺基群上积累光激发电荷有效,从而为氧化反应带来了最佳性能。这项工作是一项概念验证研究,用于采用成本效率的聚合物半导体通过常规合成来构建PEC系统。此外,它突出了设计聚合物结构的战略方法,从而改善了有机合成的太阳能转换以及选择性和产量。
复合材料是多组分系统,其功能由其成分之间的相互作用决定。化合物的均匀性取决于材料、材料之间的相互作用和合成,并对性能产生重大影响。纳米粒子已被证明可以通过降低界面张力变成表面活性剂来促进不混溶液体的混合 [ 1 ],并可能导致不混溶和可混溶聚合物溶液之间的可逆转变。将磁性纳米粒子添加到分子铁电体中可以合成多铁性材料 [ 2 – 4 ]。尽管自旋交叉复合物本身可以形成纳米粒子 [ 5 – 7 ],但将磁性纳米粒子添加到自旋交叉分子中的研究很少。 [Fe(Htrz) 2 (trz)](BF 4 )(Htrz = 1H-1,2,4-三唑,trz − = 去质子化三唑配体)[7 – 12]就是这样一种自旋交叉复合物,它也已与纳米粒子结合[13, 14]。[Fe(Htrz) 2 (trz)](BF 4 )的特点是自旋态随温度变化而转变,从而引起电导率的变化[9, 15 – 19]。这种特定分子的自旋交叉转变温度通常为 (340–360) K,在接近室温时产生自旋态双稳态[8 – 12, 15 – 20]。通过添加聚苯胺 (PANI) [ 19 , 21 ] 或聚吡咯 [ 21 , 22 ],所得均质复合材料的导通电阻可降低至 < 1 Ω · cm,从而使更小的分子器件成为可能 [ 23 ],而不会因高阻抗而导致长延迟时间。为了了解自旋交叉复合物中自旋态间双稳态协同效应的修改 [ 24 ],已经采用了多种技术 [ 25 – 27 ]。虽然用金属取代 [Fe(Htrz) 2 (trz)](BF 4 ) 中的 Fe 会降低电导率 [ 18 ],但添加 Fe 3 O 4 等金属纳米颗粒可以通过驱动形态变化完全避免此问题。充分利用此类多组分系统的潜力以及由于添加纳米颗粒而产生的修改需要
每子房胚珠数 (ONPO) 决定了每果种子数的最大潜力,而种子数是作物种子产量的直接组成部分。本研究旨在利用新开发的油菜双单倍体 (DH) 群体剖析 ONPO 的遗传基础和分子机制。在所有四个研究环境中,201 个 DH 品系的 ONPO 呈正态分布,变化范围从 22.6 到 41.8,表明数量遗传适合于 QTL 定位。开发了 19 个连锁群内 2111 个标记的骨架遗传图谱,总长度为 1715.71 cM,标记间平均为 0.82 cM。连锁图谱鉴定出 10 个 QTL,分布在 8 条染色体上,解释 7.0-15.9% 的表型变异。其中四个与报道的相同,两个被重复检测到且影响相对较大,凸显了它们在标记辅助选择中的潜力。高、低 ONPO 品系两库子房(胚珠起始阶段)的植物激素定量分析显示,九种亚型植物激素的水平存在显著差异,表明它们在调节胚珠数量方面发挥着重要作用。转录组分析鉴定出两库之间 7689 个差异表达基因 (DEG),其中近一半富集到已报道的调控 ONPO 基因的功能类别中,包括蛋白质、RNA、信号传导、杂项、发育、激素代谢和四吡咯合成。整合连锁 QTL 作图、转录组测序和 BLAST 分析,鉴定出已报道的胚珠数基因的 15 个同源物和 QTL 区域中的 327 个 DEG,这些被视为直接和潜在的候选基因。这些发现进一步加深了对ONPO遗传基础和分子机制的认识,将有助于未来基因克隆和遗传改良,从而提高油菜种子产量。