摘要:当用聚合物基材料补充或替换组织或器官时,生物功能性和生物相容性至关重要。在这里,我们制备了基于硬脂基甲基丙烯酸酯 (SM) 和乙烯基吡咯烷酮 (VP) 的生物相容性 SM- x 网络,它们具有自修复和形状记忆特性。摩尔比在 10% 到 90% 之间逐渐从亲水单元变为疏水单元,以获得满足各种潜在生物应用要求的凝胶。除了具有随时间变化的粘弹性之外,凝胶的机械性能还可以通过引入反应介质的 SM 量来控制。低 SM 含量的凝胶不能完全恢复到其初始模量值,而浓度 ≥ 60% 时形成的凝胶由于动态疏水相互作用而完全可逆,这对自修复行为也很有效。此外,所有网络都可以在几秒钟内完全恢复其永久形状。接种在 SM-x 水凝胶上的人体皮肤成纤维细胞的活力与结构的水接触角密切相关,在所有 x 值下均超过 82%。根据这些发现,SM-x 凝胶样品的广泛特性可能显示出满足各种生物医学应用需求的巨大潜力。关键词:自修复、形状记忆、硬脂基甲基丙烯酸酯、乙烯基吡咯烷酮、生物相容性
佩戴合适的手套。根据 EN 374 测试的化学防护手套是合适的。对于特殊用途,建议与这些手套的供应商一起检查上述防护手套的耐化学性。这些时间是 22°C 和持续接触时测量的近似值。由于加热物质、体热等导致的温度升高以及拉伸导致的有效层厚度减小会导致突破时间显著缩短。如有疑问,请联系制造商。在约 1.5 倍大/小的层厚度下,相应的突破时间加倍/减半。数据仅适用于纯物质。当转移到物质混合物时,它们只能被视为指导。
突出显示54 55•革兰氏阴性含量的抗氨基甲酸抗性大多是由AAC(6')-IB 56酶57•AAC(6') - IB - IB在大多数革兰氏阴性病原体中都鉴定出IB,大多数革兰氏阴性病原体58•AAC(6'')的抑制剂可用于治疗抗ib(6'') - IB的抑制作用59•IB的抑制作用59•IB的抑制作用59-确定的抑制剂60•可以通过结构活动关系研究来优化铅化合物61 62
1科学技术学院,西尔西亚大学西尔西亚大学,萨尔科纳9,40-007 Katowice,波兰; Barbara.hachula@us.edu.pl 2物理研究所,科学技术学院,西里西亚大学,卡托维奇大学,波兰库索夫41-500pułkupiechoty 1a,波兰乔尔索夫41-500; taoufik.lamrani@us.edu.pl(T.L.); magdalena.tarnacka@us.edu.pl(M.T。); karolina.jurkiewicz@us.edu.pl(K.J.); patryk.ziola@us.edu.pl(P.Z.); anna.mrozek-wilczkiewicz@us.edu.pl(A.M.-W。); kamil.kaminski@us.edu.pl(k.k.)3 Biotechnology Center,Silesian技术大学,Boleslawa Krzywoustgo 8,44-100 Gliwice,Poland 4 44-100 44-100,44-100,44-100,44-100,44-100,44-100,44-100,44-100 Poland of Sosnowiec的药物学和植物学系,索斯诺维奇索斯诺伊奇索斯诺伊科克医科大学的索斯诺瓦尔索斯诺伊斯西亚氏病学院。 ekaminska@sum.edu.pl *通信:luiza.orszulak@us.edu.pl
摘要:聚乙烯二氟(PVDF)扩展的石墨(EXGR)纳米复合材料已通过溶液混合和熔融加工方法制备。在存在聚乙烯基吡喃酮(PVP)的情况下,石墨纳米片(GNSS)在PVDF矩阵中的分散体增强,如田间发射扫描电子显微镜分析所暗示的,导致非常低的电溶解率(0.3 wt%EXGR)。X射线衍射,傅立叶变换红外光谱和差异扫描Calorim-etry(DSC)分析证实了电活性伽玛和非极性α相的共存。与GNSS周围的PVP链包裹可降低PVDF-EXGR纳米复合材料中的结晶度,而DSC分析证明,与整洁的PVDF膜相比。热重分析证实,PVDF-EXGR纳米复合材料在500°C以上的热稳定性增强,主要归因于PVP辅助的GNSS分散体。与整洁的PVDF膜相比,溶液混合PVDF-EXGR纳米复合膜的水接触角在有或没有PVP的情况下增加。与溶剂铸膜相比,压缩式PVDF-EXGR纳米复合材料还表现出PVDF的电活性伽玛和非极性α阶段,其电导率的降低。
b'lithium-o 2(li o 2)细胞是一类引人入胜的LI金属空气电池,具有最高的理论特异性能密度(3500 WHKG 1)。[1]尽管如此,直到他们的商业化成为现实,仍然需要漫长的旅程。从物质的角度来看,已经在开发更有效的电解质方面做出了许多努力,这些电解质符合广泛的属性,例如高离子电导率或更环保的电解质。[2]从这个意义上讲,由于良好的运输特性,非挥发性,低毒性的结合,离子液体(ILS)似乎是常规易燃有机溶剂的一个很好的替代品(请注意,需要仔细分析此特性),[3] [3]非耐受性和对超氧自由基的稳定性。[4,5]李O 2电池中研究最多的离子液体是基于咪唑 - 和吡咯烷菌的[4,6 \ xe2 \ x80 \ x939]和基于氟的牛灰(即bis(trifluororomethananesulfonyllfonyl)Imiide,tffone)。[10]最近,较少使用的四烷基铵基于ILS,例如N,N,N-二乙基-N-甲基-N-(2-甲氧亚乙基)BIS(三氟甲磺酰硫磺酰基)imide([Deme] [Deme] [deme] [tfsi]),已显示出适用于这种类型的彩色彩色彩色的物体。'
1. 物质信息 N-甲基吡咯烷酮 (C 5 H 9 NO),CAS 872-50-4。同义词:N-甲基吡咯烷酮、1-甲基-2-吡咯烷酮、NMP。N-甲基吡咯烷酮在室温下为无色透明液体,沸点分别为 202°C、395.6°F。该液体不易燃。N-甲基吡咯烷酮有鱼腥味。它可与水和常见有机溶剂混溶。N-甲基吡咯烷酮着火时可能会释放一氧化碳和氮氧化物。N-甲基吡咯烷酮是一种挥发性较弱的有机溶剂,用于微电子和制药行业的化学品和树脂。它可替代其他溶剂,例如用于油漆剥离和润滑油提取;它被用作杀虫剂、涂料、粘合剂、染料、颜料、聚合物和聚氨酯泡沫清洁的溶剂。
根据我们先前发表的一项程序,实现了靶化合物的合成。[14] 5岁的市售2-氯苯二唑唑5被适当取代的苄基溴(DMF,NAH,0°C)烷基化,以产生6(方案1)。接下来,在微波条件下(μW,200°C,30分钟)与取代的2-氯苯二唑唑反应,以获得最终靶标7A-J。同样,可以逆转反应序列以探索分子的南部。根据方案2中的概述,合成了5个和6个取代的类似物。到此末端,用BNBR烷基化的2-硝基苯氨酸为11。接下来,将硝基组降低(H 2 /pd),然后用1,1'-甲求二咪唑(THF,RT)循环,以产生苯并咪唑-2-ONE,12,可以将其转换为2-氯衍生物,13(PCL 3,PCL 3,90°C)。[15]
摘要:comfrey(Finale的交响曲)是一种具有抗炎,镇痛和增殖特性的药用植物。然而,其药物应用在其组织中的有毒吡咯烷生物碱(PAS)的同时存在受到阻碍。使用基于CRISPR/CAS9的方法,我们将有害的突变引入了编码同倍氨酸合酶(HSS)的HSS基因,这是PA生物合成的第一个途径酶。分析了所得的毛根(HR)线,以显示其表现出的基因编辑效应的类型以及同性恋和PA含量。仅对两个HSS等位基因中的一个灭活,导致HRS的HRS显着降低,同性恋和PAS的水平显着降低,而在两个失活的HSS等位基因的HR中未检测到生物碱。PA,证实这些根源无法产生PAS仅归因于灭活的HSS,而不是任何未识别的crispr/cas9方法的未识别的非目标效应。进一步的分析表明,至少在痕迹中拥有无PA的HR,可检测到的同性恋量,并且操纵的HR的PA模式与对照线的PA模式不同。讨论了这些观察结果的潜在使用这种CRISPR/CAS9介导的方法在药用植物中经济剥削的体外系统以及非建模植物中PA生物合成的进一步研究。